Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110306    DOI: 10.1088/1674-1056/19/11/110306
GENERAL Prev   Next  

Faithful quantum secure direct communication protocol against collective noise

Yang Jing(杨静)a), Wang Chuan(王川)a)b)†ger, and Zhang Ru(张茹)a)
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Key Laboratory for Atomic and Molecular Nanosciences and Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  An improved quantum secure direct communication (QSDC) protocol is proposed in this paper. Blocks of entangled photon pairs are transmitted in two steps in which secret messages are transmitted directly. The single logical qubits and unitary operations under decoherence free subspaces are presented and the generalized Bell states are constructed which are immune to the collective noise. Two steps of qubit transmission are used in this protocol to guarantee the security of communication. The security of the protocol against various attacks are discussed.
Keywords:  quantum secure direct communication      collective noise  
Received:  13 April 2010      Revised:  11 May 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Fundamental Research Program (Grant No. 2010CB923202), the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0710), the National Natural Science Foundation of China (Grant Nos. 60937003 and 10947151).

Cite this article: 

Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹) Faithful quantum secure direct communication protocol against collective noise 2010 Chin. Phys. B 19 110306

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India (IEEE, New York), pp.175--179
[2] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[5] Chen W, Han Z F, Mo X F, Xu F Z, Wei G and Guo G C 2008 Chinese Sicence Bulletin 53 1310
[6] Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Int. J. Quant. Info. 7 1479
[7] Bostr"om K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[8] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[9] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[10] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[11] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[12] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[13] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2007 Chin. Phys. 16 3553
[14] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
[15] Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Science in China Series G-Physics Mechanics Astron, 51 1853
[16] Yang Y G and Wen Q Y 2008 Science in China Series G-Physics Mechanics Astron 51 176
[17] Gao T Z 2004 Naturforsch A 59 597
[18] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
[19] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[20] Song J, Zhu A D and Zhang S 2007 Chin. Phys. 16 621
[21] Xia Y, Song J and Song H S 2007 Opt. Comm. 279 395
[22] Xia Y and Song H S 2007 Phys. Lett. A 364 117
[23] Song J, Xia Y and Song H S 2008 Comm. Theor. Phys. 49 635
[24] Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Frontiers of Physics in China 2 251
[25] Bacon D, Kempe J, Lidar D A and Whaley K B 2000 Phys. Rev. Lett. 85 1758
[26] Kempe J, Bacon D, Lidar D A and Whaley K B 2001 Phys. Rev. A 63 042307
[27] Zou X B, Shu J and Guo G C 2006 Phys. Rev. A 73 054301
[28] Xia Y, Song J, Song H S and Zhang S 2009 J. Opt. Soc. American B 26 129
[29] Zukowski M, Zeilinger A, Horne A and Ekert A K 1999 Phys. Rev. Lett. 71 4287
[30] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wcotters W 1996 Phys. Rev. Lett. 76 722
[31] Deutsch D, Ekert A, Jozsa R, Macckiavello C, Popcscu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[32] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[33] Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901
[34] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[35] Inamori H, Rallan L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6913
[36] Waks E, Zeevi A and Yamamoto Y 2001 Phys. Rev. A 65 052310 endfootnotesize
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[3] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[4] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[5] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[6] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
[7] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[8] Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
Wang Chao (王朝), Liu Jian-Wei (刘建伟), Chen Xiu-Bo (陈秀波), Bi Ya-Gang (毕亚港), Shang Tao (尚涛). Chin. Phys. B, 2015, 24(4): 040304.
[9] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[10] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽). Chin. Phys. B, 2014, 23(1): 010305.
[11] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[12] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[13] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[14] Quantum broadcast communication with authentication
Yang Yu-Guang(杨宇光), Wang Ye-Hong(王叶红), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(7): 070304.
[15] Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(5): 050306.
No Suggested Reading articles found!