Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110305    DOI: 10.1088/1674-1056/19/11/110305
GENERAL Prev   Next  

Controlled decoherence of floating flux qubits

Ji Ying-Hua(嵇英华)a)b) and Xu Lin(徐林)a)
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Nanchang 330022, China
Abstract  In Born–Markov approximation, this paper calculates the energy relaxation time T1 and the decoherence time T2 of a floating flux qubit by solving the set of Bloch–Redfield equations. It shows that there are two main factors influencing the floating flux qubits: coupling capacitor in the circuit and the environment resistor. It also discusses how to improve the quantum coherence time of a qubit. Through shunt connecting/ series connecting inductive elements, an inductive environment resistor is obtained and further the reactance component of the environment resistor is improved,which is beneficial to the enhancement of decoherence time of floating flux qubits.
Keywords:  decoherence time      floating flux qubit      control  
Received:  02 April 2010      Revised:  07 May 2010      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  84.30.Bv (Circuit theory)  
  84.32.Ff (Conductors, resistors (including thermistors, varistors, and photoresistors))  
  84.32.Tt (Capacitors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10864002).

Cite this article: 

Ji Ying-Hua(嵇英华) and Xu Lin(徐林) Controlled decoherence of floating flux qubits 2010 Chin. Phys. B 19 110305

[1] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature (London) 431 159
[2] Burkard G 2009 Phys. Rev. B 79 125327
[3] Yoshihara F, Harrabi K, Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. Lett. 97 167001
[4] Astafiev A, Pashkin Y A, Nakamura Y, Yamamoto T and Tsai J S 2006 Phys. Rev. Lett. bf 96 137001
[5] Ji Y H, Cai S H and Hu J J 2008 Chin. Phys. B 17 440
[6] Wang Z W and Xiao J L 2007 Acta Phys. Sin. 56 678 (in Chinese)
[7] Majer J B, Paauw F G, ter Haar A C J, Harmans C J P M and Mooij J E 2005 Phys. Rev. Lett. 94 090501
[8] Ji Y H, Lai H F, Cai S H and Wang Z S 2010 Chin. Phys. B 19 030310
[9] Amin M H S, Smirnov A Yu and Maassen van der Brink A 2003 Phys. Rev. B 67 100508R
[10] Yang C P and Han S 2004 Phys. Lett. A 321 273
[11] Kis Z and Paspalakis E 2004 Phys. Rev. B 69 024510
[12] Muller C, Shnirman A and Makhlin Y 2010 Phys. Rev. B 80 134517
[13] Hu X N and Li X Q 2006 Acta Phys. Sin. 55 3259 (in Chinese)
[14] Zhu J M and Wang S J 2006 Acta Phys. Sin. 55 5018 (in Chinese)
[15] Migliore R and Messina A 2004 J. Opt. B: Quantum Semiclassical Opt. 6 S136
[16] Chiarello F 2000 Phys. Lett. A 277 189
[17] Averin D V, Friedman J R and Lukens J E 2000 Phys. Rev. B 62 11802
[18] Steffen M, Brito F, DiVincenzo D, Kumar S and Ketchen M 2009 New Journal of Physics bf11 033030
[19] Feiedman J, Patel V, Chen W, Tolpygo S and Lukens J E 2000 Nature bf406 43
[20] Burkard G, Koch R H and DiVincenzo D P 2004 Phys. Rev. B 69 064503
[21] Chirolli L and Burkard G 2006 Phys. Rev. B 74 174510
[22] Zhou Z, Chu S I and Han S 2002 Phys. Rev. B 66 054527
[23] Leggett A J, Chakravarty S, Dorsey A T, Fisher Matthew P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[7] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[8] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[9] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[10] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[11] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[12] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[13] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[14] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[15] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
No Suggested Reading articles found!