Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110203    DOI: 10.1088/1674-1056/19/11/110203
GENERAL Prev   Next  

New approximate solution for time-fractional coupled KdV equations by generalised differential transform method

Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林)†ger
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  In this paper, the generalised two-dimensional differential transform method (DTM) of solving the time-fractional coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the generalised two-dimensional DTM is effective for the coupled equations.
Keywords:  fractional coupled KdV equations      Caputo fractional derivative      differential transform method      approximate analytic solution  
Received:  16 March 2010      Revised:  18 June 2010      Accepted manuscript online: 
PACS:  02.10.De (Algebraic structures and number theory)  
  02.30.Jr (Partial differential equations)  
  02.30.Lt (Sequences, series, and summability)  
  02.30.Mv (Approximations and expansions)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 20080404MS0104), and the Young Scientists Fund of Inner Mongolia University of China (Grant No. ND0811).

Cite this article: 

Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林) New approximate solution for time-fractional coupled KdV equations by generalised differential transform method 2010 Chin. Phys. B 19 110203

[1] Li C P and Wang Y H 2009 Comput. Math. Appl. 57 1672
[2] Santanu S R 2009 Commun. Nonlinear. Sci. Numer. Simulat. 14 1295
[3] Yulita M R, Nooran M S M and Hashim I 2009 Nonlinear Anal. Real World Appl. 10 1854
[4] Mustafa I 2008 J. Math. Anal. Appl. 345 476
[5] Jafari H and Seifi S 2009 Commun. Nonlinear. Sci. Numer. Simulat. 14 1962
[6] Xu H, Liao S J and You X C 2009 Commun. Nonlinear. Sci. Numer. Simulat. 14 1152
[7] Zhang Y 2009 Appl. Math. Comput. 215 524
[8] Chen S, Liu F, Zhuang P and Anh V 2009 Appl. Math. Model. 33 256
[9] Chen Y and An H L 2008 Commun. Theor. Phys. (Bejing, China) 49 839
[10] Li B A and Wang M L 2005 Chin. Phys. 14 1698
[11] Qian S P and Tian L X 2007 Chin. Phys. 16 303
[12] Yang J R and Mao J J 2008 Chin. Phys. B 17 4337
[13] Yang J R and Mao J J 2009 Acta Phys. Sin. 58 3611 (in Chinese)
[14] Zhou J K 1986 Differential Transformation and its Applications for Electric Circuits (Wuhan: Huazhong University Press) (in Chinese)
[15] Ho S H and Chen C K 1998 Appl. Math. Model. 22 219
[16] Jang M J, Chen C L and Liy Y C 2000 Appl. Math. Comput. 115 145
[17] Ravi Kanth A S V and Aruna K 2008 Phys. Lett. A 372 4671
[18] Fatma A 2004 Appl. Math. Comput. 147 547
[19] Chang S H and Chang I L 2008 Appl. Math. Comput. 195 799
[20] Chen K C and Ho S H 1996 Appl. Math. Comput. 79 173
[21] Chang S H and Chang I L 2009 Appl. Math. Comput. 215 2486
[22] Ravi Kanth A S V and Aruna K 2009 Chaos, Solitons and Fractals 41 2277
[23] Ravi Kanth A S V and Aruna K 2009 Comput. Phys. Commun. 180 708
[24] Odibata Z and Momani S 2008 Appl. Math. Lett. 21 194
[25] Momani S, Odibat Z and Erturk V S 2007 Phys. Lett. A 370 379
[26] Kurulay M and Bayram M 2010 Commun. Nonlinear. Sci. Numer. Simulat. 15 1777
[27] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[28] Caputo M 1967 J. Roy. Austral. Soc. 13 529
[29] Momani S and Odibat Z 2008 J. Comput. Appl. Math. 220 85
[30] Lu H J and Wang M X 1999 Phys. Lett. A 255 249 endfootnotesize
[1] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[2] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
Wang Lin-Li (王琳莉), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(12): 124501.
[3] Fractional Cattaneo heat equation in a semi-infinite medium
Xu Huan-Ying (续焕英), Qi Hai-Tao (齐海涛), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2013, 22(1): 014401.
[4] Approximate analytic solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled mKdV equation
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江), Wu Di (吴迪). Chin. Phys. B, 2010, 19(8): 080204.
[5] Variational iteration method for solving compressible Euler equations
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江). Chin. Phys. B, 2010, 19(7): 070203.
No Suggested Reading articles found!