Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 109101    DOI: 10.1088/1674-1056/19/10/109101
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: a molecular dynamics simulation

Liu Tao(刘涛)a), Tian Xiao-Feng(田晓峰)a), Zhao Yu(赵宇)b), and Gao Tao(高涛)a)
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b Institute of Mountain Hazards & Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu 610041, China
Abstract  This paper performs molecular dynamics simulations to investigate the role of the monovalent cations K, Na and the divalent cation Ca on the stability and swelling of montmorillonite. The recently developed CLAYFF force field is used to predict the basal spacing as a function of the water content in the interlayer. The simulations reproduced the swelling pattern of these montmorillonites, suggesting a mechanism of their hydration different (K+ < Na + < Ca2 +) from that of K + -, Na + -, and Ca2 + -montmorillonites. In particular, these results indicate that the valence of the cations has the larger impact on the behaviour of clay--water systems. It also finds that the differences in size and hydration energy of K + , Na + and Ca2 + ions have strong implications for the structure of interlayer. This leads to the differences in the layer spacings of the simulated K + -, Na + -, and Ca2 + -montmorillonites. Furthermore, these simulations show that the K cations interact strongly with the clay sheets for the dehydrated clay sheets, but for the hydrated clays the Ca cations interact clearly strongly with the clay sheets.
Keywords:  montmorillonite      molecular dynamics simulation      swelling      hydration energy  
Received:  06 November 2009      Revised:  08 April 2010      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  82.30.-b (Specific chemical reactions; reaction mechanisms)  
Fund: Project supported by the Key Laboratory of Mountain Hazards and Earth Surface Processes, the Chinese Academy of Sciences.

Cite this article: 

Liu Tao(刘涛), Tian Xiao-Feng(田晓峰), Zhao Yu(赵宇), and Gao Tao(高涛) Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: a molecular dynamics simulation 2010 Chin. Phys. B 19 109101

[1] Velde B 1995 Origin and Mineralogy of Clays (New York: Springer)
[2] Perkins D 1998 Mineralogy (New Jersey: Prentice Hall)
[3] Giannelis E P 1996 Adv. Mater. 8 29
[4] Alexandre M and Dubois P 2000 Mater. Sci. Eng. 28 1
[5] Lebaron P C, Wang Z and Pinnavaia T 1999 J. Appl. Clay Sci. 15 11
[6] Greenwell H C, Jones W, Voveney P V and Stackhouse S 2006 J. Mater. Chem. 16 708
[7] Teng B K G 1974 The Chemistry of Clay--Organic Reactions (New York: Wiley)
[8] Grim R E 1962 Applied Clay Mineralogy (New York: McGraw-Hill)
[9] Bleam W F 1993 Rev. Geophys. 31 51
[10] Gong B A and Qi S M 1995 Acta Phys. Sin. 44 157 (in Chinese)
[11] Skipper N T, Chou Chang F and Sposito G 1995 Clays Clay Miner. 43 285
[12] Karaborni S, Smit B, Heidug W, Urai J and Oort E van Science 1996 271 1102
[13] Ch'avez-P'aez M, Workum K Van, DePablo L and DEPablo J J 2001 J. Chem. Phys. 114 1405
[14] Greathous J A and Storm E W 2002 Mol. Simul. 28 633
[15] Greathouse J A, Refson K and Sposito G 2000 J. Am. Chem. Phys. 94 7434
[16] Fang Q H, Huang S P, Liu Z P and Wang W C 2004 Acta Chinm. Sin. 62 2407 (in Chinese)
[17] Skipper N T, Chang F R C and Sposito G 1995 Clays. Clay. Miner. 43 285
[18] Skipper N T, Chang F R C and Sposito G 1995 Clays. Clay. Miner. 43 294
[19] Stackhous S, Coveney P V and Sandre E 2001 J. Am. Chem. Soc. 123 11764
[20] He M C, Fang Z J and Zhang P 2009 Chin. Phys. B bf18 2933
[21] He H P, Galy J and Gerard J F 2005 J. Phys. Chem. B 109 13301
[22] Shao J L, Qin C S and Wang P 2009 Acta Phys. Sin. bf58 1936 (in Chinese)
[23] Skipper N T, Lock P A, Titiloyer J O, Mirza Z A, Howells W S and Fernandez-Alonso F 2006 Chem. Geol. 230 182
[24] Li X, Hu Y Z and Jiang L 2008 Chin. Phys. B 17 3035
[25] Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 251
[26] Li M L, Zhang D S, Fu H N, Yao X Y, Li X W, Duan C, Yan Y P, Mu Y, Chen H and Sun M H 2008 Acta Phys. Sin. 57 7157 (in Chinese)
[27] Plimpton S J 1995 J. Comput. Phys. 117 1
[28] Cygan R T, Liang J J and Kalinichev A G 2004 J. Phys. Chem. B 108 1255
[29] Berendsen H J C, Postma J P M, van Gunsteren W F and Hermans J 1981 Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces, ed. Pullman B (Amsterdam: D Reidel) p. 331
[30] Ch'avez-P'aez M and Workum K V 2001 J. Chem. Phys. 114 1405
[31] Pablo L De, Ch'avez M L, Sum A K and De Pablo J J 2004 J. Chem. Phys. 120 939
[32] Boek E S, Coveney P V and Skipper N T 1995 J. Am. Chem. Soc. 117 12608
[33] Ch'avez-P'aez M, Pablo L De and De Pablo J J 2004 J. Chem. Phys. 114 24
[34] Boek E S, Conevey P V and Skipper N T 1995 Langmuir 11 4629
[35] Rutherford D W, Chiou C T and Eberl D D 1997 Clays Clay Miner. 45 534
[36] Delville A 1992 Langmuir 8 1796
[37] Marry V, Turc P, Cartailler T and Levesque D 2002 J. Chem. Phys. 117 3454
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!