Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107206    DOI: 10.1088/1674-1056/19/10/107206
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

GaP layers grown on GaN with and without buffer layers

Li Shu-Ti(李述体)a)b), Cao Jian-Xing(曹健兴)a)b), Fan Guang-Han(范广涵)a)b), Zhang Yong(章勇)a)b), Zheng Shu-Wen(郑树文)a), and Su Jun(苏军)a)
a Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China; b Key Laboratory of Electroluminescent Devices of Department of Education of Guangdong Province, Guangzhou 510631, China
Abstract  The growth of GaP layer on GaN with and without buffer layers by metal-organic chemical vapour deposition (MOCVD) has been studied. Results indicate that the GaP low temperature buffer layer can provide a high density of nucleation sites for high temperature (HT) GaP growth. These sites can promote the two-dimensional (2D) growth of HT GaP and reduce the surface roughness. A GaP single crystal layer grown at 680℃ is obtained using a 40-nm thick GaP buffer layer. The full-width at half-maximum (FWHM) of the (111) plane of GaP layer, measured by DCXRD, is 560 arcsec. The GaP layer grown on GaN without low temperature GaP buffer layer shows a rougher surface. However, the FWHM of the (111) plane is 408 arcsec, which is the indication of better crystal quality for the GaP layer grown on GaN without a low temperature buffer layer. Because it provides less nucleation sites grown at high growth temperature, the three-dimensional (3D) growth is prolonged. The crystalline quality of GaP is lightly improved when the surface of GaN substrate is pretreated by PH3, while it turned to be polycrystalline when the substrate is pretreated by TEGa.
Keywords:  metal-organic chemical vapour deposition      semiconductors      gallium phosphide      gallium nitride      x-ray diffraction  
Received:  29 March 2010      Revised:  28 April 2010      Accepted manuscript online: 
PACS:  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  68.55.-a (Thin film structure and morphology)  
  68.55.A- (Nucleation and growth)  
  73.61.Ey (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50602018), the Natural Science Foundation of Guangdong Province of China (Grant No. 8251063101000007), and the Science and Technology Program of Guangdong Province of China (Grant Nos. 2007498351 and 2009B011100003).

Cite this article: 

Li Shu-Ti(李述体), Cao Jian-Xing(曹健兴), Fan Guang-Han(范广涵), Zhang Yong(章勇), Zheng Shu-Wen(郑树文), and Su Jun(苏军) GaP layers grown on GaN with and without buffer layers 2010 Chin. Phys. B 19 107206

[1] Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Appl. Phys. Lett. 67 1868
[2] Nakamura S 1991 Jpn. J. Appl. Phys. 80 L1705
[3] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 4059
[4] Gong X, Hao Y and Lü L 2008 Chin. Phys. B 17 1128
[5] Li S T, Cao J X, Fan G H, Yong Z, Zheng S W, Sun H Q and Su J 2008 Semicond. Sci. Technol. 23 095003
[6] Peng W C and Wu Y S 2006 Appl. Phys. Lett. 88 181117
[7] Dekker J, Tukiainen A, Xiang N, Orsila S, Saarinen M, Toivonen M, Pessa M, Tkachenko N and Lemmetyinen H 1999 J. Appl. Phys. 86 3709
[8] Kish F A, Steranka F M and Defevere D C 1994 Appl. Phys. Lett. 64 2839
[9] Terai Y, Hidaka K, Fujii K, Takemoto S, Tonouchi M and Fujiwara Y 2008 Appl. Phys. Lett. 93 231117
[10] King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2008 Appl. Phys. Lett. 90 183516
[11] Xu J B, Fu X J, Guo T Y, Hu A J and Zang H Y 2010 Chin. Phys. B 19 037302
[12] Sato H, Sarkar M R, Naoi Y and Sakai S 1997 Solid State Electron. 41 205
[13] Botnaryuk V M and Raevski S D 1998 Semiconductors bf 32 1077
[14] Li S T, Su J, Fan G H, Yong Z, Zheng S W, Sun H Q and Cao J X 2008 J. Crystal Growth 310 3722
[15] Akasaki I, Amano H, Koide Y, Hiramatsu K and Sawaki N 1989 J. Crystal Growth 98 209
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[3] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[4] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[7] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[10] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[11] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[12] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[13] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[14] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[15] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
No Suggested Reading articles found!