Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 106104    DOI: 10.1088/1674-1056/19/10/106104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation

Ding Hao(丁皓), Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Hui Chao(惠超), Xu Zhi-Chuan(徐梽川), Li Chen(李晨), Tian Yuan(田园), Wang Deng-Ke(王登科), and Gao Hong-Jun(高鸿钧)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size.
Keywords:  Pd nanocubes      electrocatalytic activity      methanol oxidation      fuel cell  
Received:  09 November 2009      Revised:  14 May 2010      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  68.65.Ac (Multilayers)  
  81.16.Pr (Micro- and nano-oxidation)  
  82.45.Rr (Electroanalytical chemistry)  
  82.80.Fk (Electrochemical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60571045 and 50872147) and the National High Technology Research and Development Program of China (Grant No. 2007AA03Z035).

Cite this article: 

Ding Hao(丁皓), Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Hui Chao(惠超), Xu Zhi-Chuan(徐梽川), Li Chen(李晨), Tian Yuan(田园), Wang Deng-Ke(王登科), and Gao Hong-Jun(高鸿钧) Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation 2010 Chin. Phys. B 19 106104

[1] Narayanan R and El-Sayed M A 2005 Langmuir 21 2027
[2] Shen C M, Su Y K, Yang H T, Yang T Z and Gao H J 2003 Chem. Phys. Lett. 373 39
[3] Xiao C W, Ding H, Shen C M, Yang T Z, Hui C and Gao H J 2009 J. Phys. Chem. C 113 13466
[4] Burda C, Chen X B, Narayanan R and El-Sayed M A 2005 Chem. Rev. 105 1025
[5] Kim S W, Kim M, Lee W Y and Hyeon T 2002 J. Am. Chem. Soc. 124 7642
[6] Nishihata Y, Mizuki J, Kao T, Tanaka H, Enishi M, Imura M, Kamoto T and Hamada N 2002 Nature 418 164
[7] Wang B 2005 Journal of Power Sources 152 1
[8] Baldauf M and Kolb D M 1996 J. Phys. Chem. 100 11375
[9] Hoshi N, Kida K, Nakamura M, Nakada M and Osada K 2006 J. Phys. Chem. B 110 12480
[10] Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hag`ege A, Audonnet F and Remita H 2009 Chem. Mater. 21 1612
[11] Mazumder V and Sun S 2009 J. Am. Chem. Soc. 131 4588
[12] Larsen R, Ha S, Zakzeski J and Masel R I 2006 Journal of Power Sources 157 78
[13] Xu C W, Cheng L Q, Shen P K and Liu Y L 2007 Electrochem. Commun. 9 997
[14] Li H Q, Sun G Q, Jiang Q, Zhu M Y, Sun S G and Xin Q 2007 Journal of Power Sources 172 641
[15] Sun Z P, Zhang X G, Liu R L, Liang Y Y and Li H L 2008 Journal of Power Sources 185 801
[16] Zhu Y, Kang Y Y, Zou Z Q, Zhou Q, Zheng J W, Xia B J and Yang H 2008 Electrochem. Commun. 10 802
[17] Wang R F, Liao S J and Ji S 2008 Journal of Power Sources 180 205
[18] Xiong Y J, Cai H G, Wiley J B, Wang J G, Kim M J and Xia Y N 2007 J. Am. Chem. Soc. 129 3665
[19] Xiong Y, Chen J, Wiley B, Xia Y, Yin Y and Li Z Y 2005 Nano Lett. 5 1237
[20] Kim S W, Park J, Jang Y, Chung Y, Hwang S, Hyeon T and Kim Y W 2003 Nano Lett. 3 1289
[21] Wang C, Daimon H, Onodera T, Koda T and Sun S 2008 Angew. Chem. Int. Ed. 47 3588
[22] Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z and Sun K 2009 Angew. Chem. Int. Ed. 48 4217
[23] Xiong Y J, Wiley B, Chen J Y, Li Z Y, Yin Y D and Xia Y N 2005 Angew. Chem. Int. Ed. 44 7913
[24] Filankembo A, Giorgio S, Lisiecki I and Pileni M P 2003 J. Phys. Chem. B 107 7492
[25] Wiley B J, Xiong Y J, Li Z Y, Yin Y D and Xia Y N A 2006 Nano Lett. 6 765 endfootnotesize
[1] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[2] Low-temperature synthesis of apatite-type La9.33Ge6O26 as electrolytes with high conductivity
Guang-Chao Yin(尹广超), Guo-Dong Zhao(赵国栋), Hong Yin(殷红), Fu-Chao Jia(贾福超), Qiang Jing(景强), Sheng-Gui Fu(付圣贵), Mei-Ling Sun(孙美玲), Wei Gao(高伟). Chin. Phys. B, 2018, 27(4): 048201.
[3] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[4] Synthesis of graphene-supported monodisperse AuPd bimetallic nanoparticles for electrochemical oxidation of methanol
Xiao Hong-Jun (肖红君), Shen Cheng-Min (申承民), Shi Xue-Zhao (时雪钊), Yang Su-Dong (杨苏东), Tian Yuan (田园), Lin Shao-Xiong (林少雄), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078109.
[5] Crystal structure and ionic conductivity of Mg-doped apatite-type lanthanum silicates La10Si6-xMgxO27-x(x=0-0.4
Yin Guang-Chao (尹广超), Yin Hong (殷红), Zhong Lin-Hong (仲林红), Sun Mei-Ling (孙美玲), Zhang Jun-Kai (张俊凯), Xie Xiao-Jun (谢晓君), Cong Ri-Dong (丛日东), Wang Xin (王欣), Gao Wei (高伟), Cui Qi-Liang (崔啟良). Chin. Phys. B, 2014, 23(4): 048202.
[6] Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for formic acid oxidation
Yang Su-Dong(杨苏东), Shen Cheng-Min(申承民), Tong Hao(佟浩), He Wei(何卫), Zhang Xiao-Gang(张校刚), and Gao Hong-Jun(高鸿钧) . Chin. Phys. B, 2011, 20(11): 113301.
No Suggested Reading articles found!