Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 104202    DOI: 10.1088/1674-1056/19/10/104202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Relation between Debye series and generalized Lorentz–Mie theory of laser beam scattering by multilayer cylinder

Li Hai-Ying(李海英), Wu Zhen-Sen(吴振森), and Li Zheng-Jun(李正军)
School of Science, Xidian University, Xi'an 710071, China
Abstract  With the recursive relations of Bessel function and applying inductive approach, the consistency between the scattering coefficient formula of Debye series and that of the generalized Lorentz–Mie theory (GLMT) in the scattering of a multilayer cylinder illuminated by a laser beam is proved in detail. As an application example, rainbow phenomenon in the scattering of a two-layer cylinder is discussed by the Debye series components. It can be concluded that the radius and the refractive index of a two-layer cylinder have an effect on the twin-primary rainbow, and the high-order Debye series components which are associated with the high-order rainbows are more complex than those of a homogeneous cylinder.
Keywords:  laser beam scattering      a multilayer cylinder      rainbow phenomena  
Received:  19 January 2010      Revised:  17 March 2010      Accepted manuscript online: 
PACS:  02.30.Lt (Sequences, series, and summability)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771038 and 60971065), and the Fundamental Research Funds for the Central Universities, China.

Cite this article: 

Li Hai-Ying(李海英), Wu Zhen-Sen(吴振森), and Li Zheng-Jun(李正军) Relation between Debye series and generalized Lorentz–Mie theory of laser beam scattering by multilayer cylinder 2010 Chin. Phys. B 19 104202

[1] Wang Q H, Zhang Y Y, Lai J C, Li Z H and He A Z 2007 wxActa Phys. Sin. 56 1203 (in Chinese)
[2] Sun X M, Wang H H, Liu W Q and Shen J 2009 wx Chin. Phys. B 18 1040
[3] Gouesbet G, Gréhan G and Maheu B 1988 wxAppl. Opt. 27 4874
[4] Gréhan G, Maheu B and Gouesbet G 1988 wxJournal of Aerosol Science 19 55
[5] Gouesbet G, Gréhan G and Ren K F 1998 wx J. Opt. Soc. Am. A 15 5113
[6] Han Y P and Wu Z S 2001 wxAppl. Opt. 40 2501
[7] Wu Z, Guo L, Ren K F, Gouesbet G and Gréhan G 1997 wxAppl. Opt. 36 5188
[8] Wu Z S and Guo L X 1998 wxProgress in Electromagnetic Research 18 317
[9] Zhang H Y and Han Y P 2005 wxIEEE Trans. Antennas. Propag. 53 1514
[10] Han G X and Han Y P 2009 wxActa Phys. Sin. 58 6167 (in Chinese)
[11] Marston P L 1980 wx Appl. Opt. 19 680
[12] Lee R L Jr 1991 wxAppl. Opt. 30 3401
[13] Langley D S and Morrell M J 1991 wxAppl. Opt. 30 3459
[14] Beeck J V and Riethmuller M L 1996 wxAppl. Opt. 35 2259
[15] Lock J A and Adler C L 1997 wxJ. Opt. Soc. Am. A 14 1316
[16] Adler C L, Lock J A and Stone B R 1998 wxAppl. Opt. 37 1540
[17] Han X E, Ren K F, Wu Z S, Corbin F, Gouesbet G and Gréhan G 1998 wxAppl. Opt. 37 8498
[18] Hom J and Chigier N 2002 wxAppl. Opt. 41 1899
[19] Lock J A 1993 wxJ. Opt. Soc. Am. A 10 693
[20] Adler C L and Lock J A 2003 wxAppl. Opt. 42 6584
[21] Lock J A, Jamison J M and Lin C Y 1994 wxAppl. Opt. 33 4677
[22] Li R X, Han X E, Jiang H F and Ren K F 2006 wxAppl. Opt. 45 1260
[23] Li R X, Han X E, Jiang H F and Ren K F 2006 wxAppl. Opt. 45 6255
[24] Li R X, Han X E, Shi L J, Ren K F and Jiang H F 2007 wx Appl. Opt. 46 4804
[25] Wu Z S and Li H Y 2008 wxChin. Phys. Lett. 25 1672 endfootnotesize
[1] Asymptotic solution of weak nonlinear model for mid-latitude stationary wind field of two-layer barotropic ocean
Lin Wan-Tao (林万涛), Zhang Yu (张宇), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2013, 22(3): 030205.
[2] New approximate solution for time-fractional coupled KdV equations by generalised differential transform method
Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林). Chin. Phys. B, 2010, 19(11): 110203.
[3] Approximate analytic solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled mKdV equation
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江), Wu Di (吴迪). Chin. Phys. B, 2010, 19(8): 080204.
[4] A complexity measure approach based on forbidden patterns and correlation degree
Wang Fu-Lai(王福来). Chin. Phys. B, 2010, 19(6): 060515.
[5] Unified treatment for accurate and fast evaluation of the Fermi-Dirac functions
I. I. Guseinov and B. A. Mamedov. Chin. Phys. B, 2010, 19(5): 050501.
[6] Fractals in DNA sequence analysis
Yu Zu-Guo (喻祖国), Vo Anh, Gong Zhi-Min (龚志民), Long Shun-Chao (龙顺湖). Chin. Phys. B, 2002, 11(12): 1313-1318.
No Suggested Reading articles found!