Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100508    DOI: 10.1088/1674-1056/19/10/100508
GENERAL Prev   Next  

Effects of memory on scaling behaviour of Kardar–Parisi–Zhang equation

Tang Gang(唐刚), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Han Kui(韩奎), and Xun Zhi-Peng(寻之朋)
Department of Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  In order to describe the time delay in the surface roughing process the Kardar–Parisis–Zhang (KPZ) equation with memory effects is constructed and analysed using the dynamic renormalization group and the power counting mode coupling approach by Chattopadhyay [2009 Phys. Rev. E 80 011144]. In this paper, the scaling analysis and the classical self-consistent mode-coupling approximation are utilized to investigate the dynamic scaling behaviour of the KPZ equation with memory effects. The values of the scaling exponents depending on the memory parameter are calculated for the substrate dimensions being 1 and 2, respectively. The more detailed relationship between the scaling exponent and memory parameter reveals the significant influence of memory effects on the scaling properties of the KPZ equation.
Keywords:  memory effect      scaling analysis      self-consistent mode coupling theory  
Received:  11 January 2010      Revised:  02 April 2010      Accepted manuscript online: 
PACS:  02.30.Mv (Approximations and expansions)  
  05.45.Df (Fractals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674177), and the Youth Foundation of China University of Mining & Technology (Grant No. 2008A035).

Cite this article: 

Tang Gang(唐刚), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Han Kui(韩奎), and Xun Zhi-Peng(寻之朋) Effects of memory on scaling behaviour of Kardar–Parisi–Zhang equation 2010 Chin. Phys. B 19 100508

[1] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889
[2] Barab'asi A L and Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)
[3] Family F and Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific)
[4] Mukherji S and Bhattacharjee S M 1997 Phys. Rev. Lett. 79 2502
[5] Tang G and Ma B K 2001 Physica A 298 257
[6] Hu B and Tang G 2002 Phys. Rev. E 66 026105
[7] Hao D P, Tang G, Xia H, Chen H, Zhang L M and Xun Z P 2007 Acta Phys. Sin. 56 2018 (in Chinese)
[8] Chattopadhyay A K 2009 Phys. Rev. E 80 011144
[9] Hentschel H G E and Family F 1991 Phys. Rev. Lett. 66 1982
[10] Tang G and Ma B K 2001 Int. J. Mod. Phys. B 15 2275
[11] Zhang L P, Tang G, Xia H, Hao D P and Chen H 2004 Physica A 338 431
[12] Tang G and Ma B K 2002 Acta Phys. Sin. 51 994 (in Chinese)
[13] Xia H, Tang G, Han K, Hao D P, Chen H and Zhang L M 2006 Mod. Phys. Lett. 20 1935
[14] G"otze W and Sj"ogren L 1992 Rep. Prog. Phys. 55 241
[15] Frey E and Schwabl F 1994 Adv. Phys. 43 577
[16] Kawasaki K 1976 Phase Transitions and Critical Phenomena (New York: Academic Press) Vol. 5a
[17] Frey E, Tauber U C and Hwa T 1996 Phys. Rev. E 53 4424
[18] Tu Y 1994 Phys. Rev. Lett. 73 3109
[19] Colaiori F and Moore M A 2001 Phys. Rev. Lett. 86 3946
[20] Colaiori F and Moore M A 2001 Phys. Rev. E 63 057103
[21] Doherty J P, Moore M A, Kim J M and Bray A J 1994 Phys. Rev. Lett. 72 2041
[22] Hwa T and Frey E 1991 Phys. Rev. A 44 R7873
[23] Jung Y K and Kim I M 2000 Phys. Rev. E 62 2949
[1] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[2] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[3] Memory effect evaluation based on transmission matrix calculation
Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖). Chin. Phys. B, 2019, 28(7): 074207.
[4] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[5] Effect of thermo-mechanical process on structure and high temperature shape memory properties of Ti-15Ta-15Zr alloy
Xiao-Hang Zheng(郑晓航), Jie-He Sui(隋解和), Zhe-Yi Yang(杨哲一), Guo-Zhang Zhi(张治国), Wei Cai(蔡伟). Chin. Phys. B, 2017, 26(5): 056103.
[6] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
[7] Thermal stability and high-temperature shape memory characteristics of Ti-20Zr-10Ta alloy
Zheng Xiao-Hang (郑晓航), Sui Jie-He (隋解和), Zhang Xin (张欣), Yang Zhe-Yi (杨哲一), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(1): 018101.
[8] Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy
Li Ge-Tian (李歌天), Liu Zhu-Hong (柳祝红), Meng Fan-Yan (孟凡研), Ma Xing-Qiao (马星桥), Wu Guang-Heng (吴光恒). Chin. Phys. B, 2013, 22(12): 126201.
[9] Einstein-Podolsky-Rosen entanglement in bad cavity case
Yuan Sui-Hong(袁绥洪) and Hu Xiang-Ming(胡响明) . Chin. Phys. B, 2010, 19(7): 074210.
[10] Effects of fractal gating of potassium channels on neuronal behaviours
Zhao De-Jiang(赵德江), Zeng Shang-You(曾上游), and Zhang Zheng-Zhen(张争珍). Chin. Phys. B, 2010, 19(10): 108701.
No Suggested Reading articles found!