Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100313    DOI: 10.1088/1674-1056/19/10/100313
GENERAL Prev   Next  

Simple schemes for generation of W-type multipartite entangled states and realization of quantum- information concentration

Zhang Deng-Yu(张登玉), Tang Shi-Qing(唐世清), Xie Li-Jun(谢利军), Zhan Xiao-Gui(詹孝贵), Chen Yin-Hua(陈银花), and Gao Feng(高峰)
Department of Physics and Electronic Information Science, and Research Institute of Photoelectricity, Hengyang Normal University, Hengyang 421008, China
Abstract  We propose simple schemes for generating W-type multipartite entangled states in cavity quantum electrodynamics (CQED). Our schemes involve a largely detuned interaction of $\Lambda$-type three-level atoms with a single-mode cavity field and a classical laser, and both the symmetric and asymmetric W states can be created in a single step. Our schemes are insensitive to both the cavity decay and atomic spontaneous emission. With the above system, we also propose a scheme for realizing quantum-information concentration which is the reverse process of quantum cloning. In this scheme, quantum-information originally coming from a single qubit, but now distributed into many qubits, is concentrated back to a single qubit in only one step.
Keywords:  cavity quantum electrodynamics      W-state generation      quantum-information concentration  
Received:  01 February 2010      Revised:  17 March 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the Key Scientific Research Fund of the Educational Department of Hunan Province of China (Grant No. 09A013) and Science Foundation of Hengyang Normal University of China (Grant No. 09A28).

Cite this article: 

Zhang Deng-Yu(张登玉), Tang Shi-Qing(唐世清), Xie Li-Jun(谢利军), Zhan Xiao-Gui(詹孝贵), Chen Yin-Hua(陈银花), and Gao Feng(高峰) Simple schemes for generation of W-type multipartite entangled states and realization of quantum- information concentration 2010 Chin. Phys. B 19 100313

[1] Zhang Y D 2005 Principle of Quantum Information Physics (Beijing: Science Press) pp. 50--212
[2] Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature (London) 403 515
[3] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[4] Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phys. Lett. A 364 7
[5] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[6] Sen A (De), Sen U, Wie'sniak M, Kaszlikowski D and .Zukowski M 2003 Phys. Rev. A 68 062306
[7] Wang X W and Yang G J 2009 Phys. Rev. A 79 062315
[8] Deng L, Chen A X, Chen D H and Huang K L 2008 Chin. Phys. B 17 2514
[9] Yu X M, Gu Y J, Ma L Z and Zhou B A 2008 Chin. Phys. B 17 462
[10] Zha X W and Zhang C M 2008 Acta Phys. Sin. 57 1339 (in Chinese)
[11] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[12] Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102
[13] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
[14] Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
[15] Olaya-Castro A, Johnson N F and Quiroga L 2005 Phys. Rev. Lett. 94 110502
[16] Zheng S B 2007 J. Phys. B: At. Mol. Opt. Phys. 40 989
[17] Zheng S B 2006 Phys. Rev. A 74 054303
[18] Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
[19] Li L and Qiu D 2007 J. Phys. A: Math. Theor. 40 10871
[20] Zhang Z J and Cheung C Y 2008 J. Phys. B: At. Mol. Opt. Phys. 41 015503
[21] Wang X W, Su Y H and Yang G J 2009 Quantum Inf. Process. 8 319
[22] Wang Y H and Song H S 2008 Opt. Commun. 281 489
[23] He J, Ye L and Ni Z X 2008 Chin. Phys. B 17 1597
[24] Zhang D Y, Tang S Q, Xie L J, Zhan X G, You K M and Gao F 2009 Int. J. Theor. Phys. 48 2685
[25] Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Commun. Theor. Phys. 51 247
[26] Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. B 18 56
[27] Shao X Q, Jin X R, Zhu A D, Zhang S and Yeon K H 2008 Chin. Phys. Lett. 25 27
[28] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[29] Murao M and Vedral V 2000 Phys. Rev. Lett. 86 352
[30] Zheng S B and Guo G C 2005 Phys. Rev. A 70 064303
[31] Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature (London) 428 50
[32] Osnaghi S and Bertet P 2001 Phys. Rev. Lett. 87 037902
[33] Wang X W 2009 Opt. Commun. 282 1052
[34] Wang X W and Yang G J 2008 Opt. Commun. 281 5282 endfootnotesize
[1] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[2] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[5] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[6] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[7] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[8] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[9] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[10] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[11] Quantum discord dynamics of two qubits in the single-mode cavities
Wang Chen (王晨), Chen Qing-Hu (陈庆虎). Chin. Phys. B, 2013, 22(4): 040304.
[12] Interaction of pair coherent state with a three-level Λ-type atom and generation of a modified Bessel-Gaussian state with a vortex structure
Tang Hui-Qin (唐慧琴), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Zhu Kai-Cheng (朱开成). Chin. Phys. B, 2013, 22(2): 020310.
[13] Nonlocal quantum cloning via quantum dots trapped in distant cavities
Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(5): 050304.
[14] Efficient scheme for entangled states and quantum information transfer with trapped atoms in a resonator
Li Peng-Bo(李蓬勃) and Li Fu-Li(李福利) . Chin. Phys. B, 2011, 20(9): 090304.
[15] Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics
Tang Jing-Wu (唐京武), Zhao Guan-Xiang (赵冠湘), He Xiong-Hui (何雄辉). Chin. Phys. B, 2011, 20(5): 050312.
No Suggested Reading articles found!