Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100312    DOI: 10.1088/1674-1056/19/10/100312
GENERAL Prev   Next  

Passive decoy state SARG04 quantum-key-distribution with practical photon-number resolving detectors

Xu Fang-Xing(许方星), Wang Shuang(王双), Han Zheng-Fu(韩正甫)†ger, and Guo Guang-Can(郭光灿)
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  SARG04 protocol has its advantages in defending photon number splitting attack, benefited from two-photon pulses part. In this paper, we present a passive decoy state SARG04 scheme combining with practical photon number resolving (PNR) detectors. Two kinds of practical detectors, transition-edge sensor and time-multiplexing detector, are taken into consideration. Theoretical analysis shows that both of them are compatible with the passive decoy state SARG04. Compared with the original SARG04, two detectors can boost the key generation rate and maximal secure distance obviously. Meanwhile, the result shows that quantum efficiency and dark count of the detector influence the maximal distance slightly, which indicates the prospect of implementation in real quantum key distribution system with imperfect practical PNS detectors.
Keywords:  quantum key distribution      photon-number-resolving detector  
Received:  25 March 2010      Revised:  11 May 2010      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB921900), the National Natural Science Foundation of China (Grant Nos. 60537020 and 60621064) and the Innovation Funds of the Chinese Academy of Sciences.

Cite this article: 

Xu Fang-Xing(许方星), Wang Shuang(王双), Han Zheng-Fu(韩正甫), and Guo Guang-Can(郭光灿) Passive decoy state SARG04 quantum-key-distribution with practical photon-number resolving detectors 2010 Chin. Phys. B 19 100312

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE) pp. 175--179.
[2] Ekert A K 1991 Phys. Rev. Lett. bf67 661
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. bf74 145
[4] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 2
[5] Inoue K, Waks E and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[6] Stucki D, Barreiro C, Fasel S, Gautier J D, Gay O, Gisin N, Thew R, Thoma Y, Trinkler P, Vannel F and Zbinden H 2009 Opt. Express 17 13326
[7] Zhang J, Wang F Q, Zhao F, Lu Y Q and Liu S H 2008 Acta Phys. Sin. 57 4941 (in Chinese)
[8] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[9] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[10] Lütkenhaus N 2000 Phys. Rev. A 61 052304
[11] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Information and Computation 4 325
[12] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[13] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[14] Wang X B 2005 Phys. Rev. Lett. 94 230503
[15] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[16] Yin Z Q, Han Z F, Sun F W and Guo G C 2007 Phys. Rev. A 76 014304
[17] Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[18] Ma X F and Lo H K 2008 New J. Phys. 10 073018
[19] Mi J L, Wang F Q, Lin Q Q and Liang R S 2008 Chin. Phys. B 17 1178
[20] Liang R S, Lin Q Q, Liu S H, Mi J L and Wang F Q 2008 Acta Phys. Sin. 57 678 (in Chinese)
[21] Hu H P, Huang Y X, Liu S H, Lu W and Wang J D 2010 Acta Phys. Sin. 59 287 (in Chinese)
[22] Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
[23] Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[24] Tamaki K and Lo H K 2004 arXiv: quant-ph/0412035
[25] Fung C H F, Tamaki K and Lo H K 2006 Phys. Rev. A 73 012337
[26] Zhang S L, Zou X B, Li K, Jin C H and Guo G C 2007 Phys. Rev. A 76 044304
[27] Zhang S L, Ou X B, Jin C H and Guo G C 2008 arXiv: quant-ph/0807.1760
[28] Irwin K D 1995 Appl. Phys. Lett. 66 1998
[29] Rosenberg D, Lita A E, Miller A, Nam S and Schwall R 2005 IEEE Trans. Appl. Supercond. 15 575
[30] Fitch M, Jacobs B, Pittman T and Franson F 2003 Phys. Rev. A 68 043814
[31] Kardynal B E, Yuan Z L and Shields A J 2008 Nature Photonics 2 425
[32] Wu G, Jian Y, Wu E and Zeng H P 2009 Opt. Express 17 18782
[33] Cai Q Y and Tan Y G 2006 Phys. Rev. A 73 032305
[34] Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
[35] Horikiri T and Kobayashi T 2006 Phys. Rev. A 73 032331
[36] Xu F X, Han Z F and Guo G C 2008 Proc. SPIE 7278 72780Y
[37] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[38] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nature Photonics 1 343 bibitemAPDpara endfootnotesize
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!