Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100306    DOI: 10.1088/1674-1056/19/10/100306
GENERAL Prev   Next  

Energy band structure of spin-1 condensates in optical lattices

Li Zhi(李志), Zhang Ai-Xia(张爱霞), Ma Juan(马娟), and Xue Ju-Kui(薛具奎)
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  The energy band structure of spin-1 condensates with repulsive spin-independent and either ferromagnetic or antiferromagnetic spin-dependent interactions in one-dimensional (1D) periodic optical lattices is discussed. Within the two-mode approximation, Bloch bands of spin-1 condensates are presented. The results show that the Bloch bands exhibit a complex structure as the atom density of mF=0 hyperfine state increases: bands splitting, reversion, intersection and loop structure are excited subsequently. The complex band structure should be related to the tunneling and spin-mixing dynamics.
Keywords:  spin-1 condensates      optical lattices      band structure  
Received:  11 January 2010      Revised:  25 March 2010      Accepted manuscript online: 
PACS:  32.10.Fn (Fine and hyperfine structure)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774120 and 10975114), the Natural Science Foundation of Gansu Province of China (Grant No. 3ZS051-A25-013), and the Natural Science Foundation of Northwest Normal University of China (Grant Nos. NWNU-KJCXGC-03-48 and NWNU-KJCXGC-03-17).

Cite this article: 

Li Zhi(李志), Zhang Ai-Xia(张爱霞), Ma Juan(马娟), and Xue Ju-Kui(薛具奎) Energy band structure of spin-1 condensates in optical lattices 2010 Chin. Phys. B 19 100306

[1] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stengerand J and Ketterle W 1998 emphPhys. Rev. Lett. 80 2027
[2] Chang M S, Hamley C D, Barrett M D, Sauer J A, Fortier K M, Zhang W, You L and Chapman M S 2004 emphPhys. Rev. Lett. 92 140403
[3] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 emphNature 396 345
[4] Matuszewski M, Alexander T J and Kivshar Yuri S 2008 emphPhys. Rev. A 78 023632
[5] Matuszewski M, Alexander T J and Kivshar Yuri S 2009 emphPhys. Rev. A 80 023602
[6] Gu Q and Qiu H 2007 emphPhys. Rev. Lett. 98 200401
[7] Ohmi M and Machida K 1998 emphJ. Phys. Soc. Jpn. 67 1822
[8] Ji A C, Liu W M , Song J L and Zhou F 2008 emphPhys. Rev. Lett. 101 010402
[9] Law C K, Pu H and Bigelow N P 1998 emphPhys. Rev. Lett. 81 5257
[10] Qi R, Yu X L, Li Z B and Liu W M 2009 emphPhys. Rev. Lett. 102 185301
[11] Pu H, Law C K, Raghavan S, Eberly J H and Bigelow N P 1999 emphPhys. Rev. A 60 1463
[12] Zhang W X, Zhou D L, Chang M S, Chapman M S and You L 2005 emphPhys. Rev. A 72 013602
[13] Black A T, Gomez E, Turner L D, Jung S and Lett P D 2007 emphPhys. Rev. Lett. 99 070403
[14] Zhao X D, Xie Z W and Zhang W P 2007 emphActa Phys. Sin. 56 6358 (in Chinese)
[15] Wen L H, Liu M, Kong L B, Chen A X and Zhan M S 2005 emphChin. Phys. 14 0690
[16] Ieda J, Miyakawa T and Wadati M 2004 emphPhys. Rev. Lett. 93 194102
[17] Li L, Li Z, Malomed B, Michalache D and Liu W M 2005 emphPhys. Rev. A 72 033611
[18] Zhang W X, M"ustecapliouglu "O E and You L 2007 emphPhys. Rev. A 75 043601
[19] Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-Gonz'alez R 2008 emphPhys. Rev. A 77 033612
[20] Morsch O and Oberthaler M 2006 emphRev. Mod. Phys. 78 179
[21] Alexander T J, Ostrovskaya E A and Kivshar Yuri S 2006 emphPhys. Rev. Lett. 96 040401
[22] Xue J K and Zhang A X 2008 emphPhys. Rev. Lett. 101 180401
[23] Xue J K, Zhang A X and Liu J 2008 emphPhys. Rev. A 77 013602
[24] Widera A, Gerbier F, F"olling S, Gericke T, Mandel O and Bloch I 2005 emphPhys. Rev. Lett. 95 190405
[25] Widera A, Gerbier F, F"olling S, Gericke T, Mandel O and Bloch I 2006 emphPhys. Rev. A 73 041602(R)
[26] Xie Z W, Zhang W, Chui S T and Liu W M 2004 emphPhys. Rev. A 69 053609
[27] Dcabrowska-W"u B J, Ostrovskaya Elena A, Alexander Tristram J and Kivshar Yuri S 2007 emphPhys. Rev. A 75 023617
[28] Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 emphPhys. Rev. Lett. 86 1402
[29] Wu B, Diener R B and Niu Q 2002 emphPhys. Rev. A 65 025601 endfootnotesize
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[8] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[9] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[10] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[11] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[12] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[13] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[14] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[15] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
No Suggested Reading articles found!