Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014213    DOI: 10.1088/1674-1056/19/1/014213
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

An efficient approach to characterizing and calculating carrier loss due to heating and barrier height variation invertical-cavity surface-emitting lasers

Wu Jian(吴坚)a) and H. D. Summersb)
a School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China; b School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3YB, Wales, UK
Abstract  It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty in deriving the parameters relating to the quantum well structure. In this paper, we describe an efficient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AlInGaAs--AlGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs.
Keywords:  semiconductor laser      vertical cavity surface emitting laser      quantum well      thermal carrier loss  
Received:  30 March 2009      Revised:  04 May 2009      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.67.De (Quantum wells)  

Cite this article: 

Wu Jian(吴坚) and H. D. Summers An efficient approach to characterizing and calculating carrier loss due to heating and barrier height variation invertical-cavity surface-emitting lasers 2010 Chin. Phys. B 19 014213

[1] Agrawal G P and Dutta N K 1993 Semiconductor Lasers (New York: Van Nostrand Reinhold) p426
[2] Coldren L A and Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (New York: John Wiley & Sons) p421
[3] Knowles G, Sweeney S J and Sale T 2001 IEE Proc. Optoelectron. 148 55
[4] Catchmark J M, Morgan R A, Asom M T, Guth G D, Focht M W, Mullally T and Christodoulides D N 1994 Electron. Lett. 30 2136
[5] Piprek J, Akulova Y A, Babic D I, Coldren L A and Bowers J E 1998 Appl. Phys. Lett. 72 1814
[6] Young D B, Scott J W, Peters F H, Peters M G, Majewski M L, Thibeault B J, Corzine S W and Coldren L A 1993 IEEE J. Quant. Electron. 29 2013
[7] Mogg S, Chitica N, Christiansson U, Schatz R, Sundgren P, Asplund C and Hammar M 2004 IEEE J. Quant. Electron. 40 453
[8] Shoji H, Otsubo K, Matsuda M and Ishikawa H 1994 Electron. Lett. 30 409
[9] Morgan R A, Hibbs-Brenner M K, Marta T M, Walterson R A, Bounnak S, Kalweit E L and Lehman J A 1995 IEEE Photon. Technol. Lett. 7 441
[10] Osinski M 1995 SPIE 2398] 42
[11] McMahon C H, Bae J W, Menoni C S, Patel D, Temkin H, Brusenbach P and Leibenguth R 1995 Appl. Phys. Lett. 66 2171
[12] Lu B, Zhou P, Cheng J, Malloy K J and Zolper J C 1994 Appl. Phys. Lett. 65 1337
[13] Summers H D and Wu J 2001 IEE Proc. Optoelectron. 148 261
[14] Wu J, Xiao W and Lu Y 2007 IET Optoelectron. 1 206
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[5] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[8] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[9] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[10] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[11] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[12] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[13] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[14] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[15] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
No Suggested Reading articles found!