Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010511    DOI: 10.1088/1674-1056/19/1/010511
GENERAL Prev   Next  

A new car-following model considering velocity anticipation

Tian Jun-Fang(田钧方), Jia Bin(贾斌), Li Xin-Gang(李新刚), and Gao Zi-You(高自友)
MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink--antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this model. Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model.
Keywords:  car-following      traffic flow      velocity anticipation  
Received:  06 July 2009      Revised:  17 July 2009      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.45.Yv (Solitons)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB705500), the National Natural Science Foundation of China (Grant Nos. 70501004, 70701004 and 70631001) and the Program for New Century Talents in University, Ministry of Education, China (Grant No. NCET-07-0057).

Cite this article: 

Tian Jun-Fang(田钧方), Jia Bin(贾斌), Li Xin-Gang(李新刚), and Gao Zi-You(高自友) A new car-following model considering velocity anticipation 2010 Chin. Phys. B 19 010511

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Kerner B S 2004 The Physics of Traffic (Heidelberg: Springer)
[4] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[5] Helbing D 2000 Traffic and Granular Flow'99 (Heidelberg: Springer)
[6] Jia B, Gao Z Y, Li K P and Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science) (in Chinese)
[7] Reuschel A 1950 Oesterreichisches Ingenieur-Archiv 4 193
[8] Pipes L A 1953 J. Appl. Phys. 24 274
[9] Chandler R E, Herman R and Montrol E W 1958 Oper. Res. 6 165
[10] Herman R and Potts R B 1961 Proceedings-Symposium on Theory of Traffic Flow (New York: Elsevier)
[11] Herman R, Montrol E W, Potts R B and Rothery R W 1959 Oper. Res. 7 86
[12] Newell G F 1961 Oper. Res. 9 209
[13] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[14] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[15] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[16] Zhao X M and Gao Z Y 2005 Eur. Phys. J. B 47 145
[17] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[18] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 0975
[19] Xie D F, Gao Z Y and Zhao X M 2008 Chin. Phys. B 17 4440
[20] Hu S X, Gao K, Wang B H and Lu Y F 2008 Chin. Phys. B 17 1863
[21] Jiang R, Jin W L and Wu Q S 2008 Chin. Phys. B 17 829
[22] Gao K, Wang B H, Fu C J and Lu Y F 2007 Chin. Phys. 16 3483
[23] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[24] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[25] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A 33 L477
[26] Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[27] Eissfeldt N and Wagner P 2003 Eur. Phys. J. B 33 121
[28] Treiber M, Kesting A and Helbing D 2006 Physica A 360 71
[29] Muramatsu M and Nagatani T 1999 Phys. Rev. E 60 180
[30] Ge H X, Cheng R J and Dai S Q 2005 Physica A 357 466
[31] Nagatani T 1999 Phys. Rev. E 60 6395
[32] Bando M, Hasebe K, Nakanishi K and Nakayama A 1998 Phys. Rev. E 58 5429
[33] Del Castillo J M and Benitez F G 1995 Transp. Res. Part B: Methodol. 29 373
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics
Cong Zhai(翟聪), Weitiao Wu(巫威眺), and Songwen Luo(罗淞文). Chin. Phys. B, 2021, 30(10): 100507.
[9] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[10] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[11] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[12] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[13] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[14] Nonlinear density wave and energy consumption investigation of traffic flow on a curved road
Zhizhan Jin(金智展), Rongjun Cheng(程荣军), Hongxia Ge(葛红霞). Chin. Phys. B, 2017, 26(11): 110504.
[15] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
No Suggested Reading articles found!