Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010315    DOI: 10.1088/1674-1056/19/1/010315
GENERAL Prev   Next  

Quantum entanglement and control in a capacitively coupled charge qubit circuit

Liang Bao-Long(梁宝龙)a)†, Wang Ji-Suo(王继锁)a)b), Meng Xiang-Guo(孟祥国)a), and Su Jie(苏杰)a)
a School of Physics Science and Information Engineering, Liaocheng University, Liaocheng 252059, China; b College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  The macroscopic quantum entanglement in capacitively coupled SQUID (superconducting quantum interference device)-based charge qubits is investigated theoretically. The entanglement characteristic is discussed by employing the quantum Rabi oscillations and the concurrence. An interesting conclusion is obtained, i.e., the magnetic fluxes $\varPhi_{x1}$ and $\varPhi_{x2}$ through the superconducting loops can adjust the entanglement degree between the qubits.
Keywords:  magnetic flux      Josephson junction      charge qubit      entanglement  
Received:  13 February 2009      Revised:  11 April 2009      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574060), the Natural Science Foundation of Shandong Province, China (Grant No. Y2008A23), and Project of Shandong Province Higher Educational Science and Technology Program (Grant No.~J09LA07).

Cite this article: 

Liang Bao-Long(梁宝龙), Wang Ji-Suo(王继锁), Meng Xiang-Guo(孟祥国), and Su Jie(苏杰) Quantum entanglement and control in a capacitively coupled charge qubit circuit 2010 Chin. Phys. B 19 010315

[1] Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
[2] Makhlin Y, Sch?n G and Shnirman A 1999 Nature 398 305
[3] Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Sherwood M H and Chuang I L 2001 Nature 414 883
[4] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, H?% fner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48
[5] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
[6] Di Vincenzo D P 1995 Science 269 225
[7] Lloyd S 1994 Science 263 695[ Landauer R 1988 Nature 335 779
[8] Vourdas A 1994 Phys. Rev. B 49 12040[Vourdas A 1996 J. Mod. Opt. 43 2105[ Liang B L, Wang J S and Fan H Y 2008 Chin. Phys. B 17 0697[ Liang B L and Wang J S 2007 Chin. Phys. 16 163097
[9] Makhlin Y, Sch?n G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[10] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[11] Deppe F, Mariantoni M, Menzel E P, Saito S, Kakuyanagi K, Tanaka H, Meno T, Semba K, Takayanagi H and Gross R 2007 Phys. Rev. B 76 214503
[12] van der Ploeg S H W, Izmalkov A, van den Brink A M, Hü% bner U, Grajcar M, Il'ichev E, Meyer H G and Zagoskin A M 2007 % Phys. Rev. Lett. 98 057004
[13] Bouchiat V, Vion D, Joyez P, Esteve D and Devoret M H 1999 J. Supercond. 12 789
[14] Shirman A, Sch?n G and Hermon Z 1997 Phys. Rev. Lett. 79 2371
[15] Berkley A J, Xu H, Gubrud M A, Ramos R C, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J and Wellstood F C 2003 Science 300 1548
[16] Wei L F, Liu Y X and Nori F 2006 Phys. Rev. Lett. 96 246803
[17] Feynman R P, Leighton R B and Sands M 1965 The Feynman Lectures on Physics (Addison-Wesley) Vol 3
[18] Dirac P A M 1958 The Principle of Quantum Mechanics (Oxford: Oxford University Press) Vol 4
[19] You J Q, Lam C H and Zheng H Z 2001 Phys. Rev. B 63 180501
[20] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill)
[21] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[22] Kim M D and Cho S Y 2007 Phys. Rev. B 75 134514
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[13] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!