Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010312    DOI: 10.1088/1674-1056/19/1/010312
GENERAL Prev   Next  

Partially secret broadcasting, partially secret splitting with quantum entanglement

Liu Yu(刘玉)a) and Zhang Bin-Bin(张彬彬) b)†
a Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; b College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  In this paper, we propose a classical secret broadcasting and splitting joint protocol in a quantum scenario. With those genuinely entangled states, the boss can always broadcast some of his secrets and split some others to multi-receivers at the same time. The efficiency of the joint protocol is also compared with that of two separate ones which realise classical secret broadcasting and classical secret splitting respectively, and based on the comparison we can see the promising advantage of our joint protocol is that it can realise the two tasks more efficiently and more conveniently.
Keywords:  secret broadcasting      secret splitting      quantum entanglement  
Received:  17 April 2009      Revised:  08 July 2009      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  

Cite this article: 

Liu Yu(刘玉) and Zhang Bin-Bin(张彬彬) Partially secret broadcasting, partially secret splitting with quantum entanglement 2010 Chin. Phys. B 19 010312

[1] Bennett C H, Brassard G, Crépau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Furusawa A, Srensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[4] Boschi D, Branca S, Martini F D, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[5] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236[Lee J, Kim M S, Park Y J and Lee S 2000 J. Mod. Opt. 47 2151
[6] Zhan X G, Li H M, Ji H and Zeng H S 2007 Chin. Phys. 16 2880
[7] Du Q H, Lin X M, Chen Z H, Lin G W, Chen L B and Gu Y J 2008 Chin. Phys. B 17 0807
[8] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[9] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[10] Bose S, Plenio M B and Vedral V 2000 J. Mod. Opt. 47 291
[11] Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
[12] Yan F L and Wang M Y 2004 Chin. Phys. Lett. 21 1195
[13] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[14] Bennett C H and Brassad G 1984 Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p175
[15] Ekert A K 1991 Phys. Rev. Lett. 67 661
[16] Lo H K and Zhao Y 2008 arXiv:0803.2507v1 [quant-ph]
[17] Ljunggren D, Bourennane M and Karlsson A 2000 Phys. Rev. A 62 022305
[18] Mihara T 2002 Phys. Rev. A 65 052326
[19] Hillery M, Bu\check zek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[20] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[21] Li Y and Zeng G H 2007 Chin. Phys. 16 2875
[22] Yan F L, Gao T and Li Y C 2008 Chin. Phys. Lett. 25 1187
[23] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[24] Schmid C, Trojek P and Bourennane M 2005 Phys. Rev. Lett. 95 230505
[25] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[26] Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 0419
[27] Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun. 281 2690
[28] Gao T, Yan F L and Li Y C 2006 arXiv:0601.111v1 [quant-ph]
[29] Yan F L, Gao T and Li Y C 2007 Science in China Series G 50 572
[30] Zhou P, Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. 16 2867
[31] Deng F G, Li X H and Zhou H Y 2008 Phys. Lett. A 372 1957
[32] Wang J, Zhang Q and Tang C J 2007 Chin. Phys. 16 1868
[33] Cai Q Y and Li B W 2004 Phys. Rev. A 69 05430
[34] Fuchs C A 1996 arxiv:9601.020v1 [quant-ph][Barnum H, Caves C M, Fuchs C A, Jozsa R, and Schumacher B 1996 Phys. Rev. Lett. 76 2818
[35] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[36] Tan Y G, Cai Q Y and Shi T Y 2008 Chin. Phys. B 17 3194
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[11] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[14] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!