Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010309    DOI: 10.1088/1674-1056/19/1/010309
GENERAL Prev   Next  

A simple scheme for implementing four-atom quantum dense coding in cavity QED

Zheng Xiao-Juan(郑小娟)a)b), Xu Hui(徐慧)a)b)†, Fang Mao-Fa(方卯发)c), and Zhu Kai-Cheng(朱开成) b)
a School of Material Science and Engineering, Central South University, Changsha 410083, China; b School of Physics Science and Technology, Central South University, Changsha 410083, China; c School of Physics Science and Technology, Central South University, Changsha 410083, China
Abstract  An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom--cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity. Thus the scheme is insensitive to cavity decay and the thermal field. In the scheme, Alice can send faithfully 4 bits of classical information to Bob by sending two qubits. Generalized Bell states can be exactly distinguished by detecting the atomic state, and quantum dense coding can be realized in a simple way.
Keywords:  cavity quantum electrodynamics(QED)      quantum dense coding  
Received:  28 April 2009      Revised:  30 June 2009      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Postdoctal Foundation of Central South University of China, the Important Program of Hunan Provincial Education Department (Grant No. 06A038), Department of Education of Hunan Province of China (Grant No. 06C080), and Hunan Provincial Natural Science Foundation, China (Grant No. 07JJ3013).

Cite this article: 

Zheng Xiao-Juan(郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成) A simple scheme for implementing four-atom quantum dense coding in cavity QED 2010 Chin. Phys. B 19 010309

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Einstein A, Poldolsky B and Rosen N 1935 Phys. Rev. 47 777
[3] Ban M 1999 J. Opt. B Quantum Semiclass. Opt. 1 L9 [3a] Zhang J, Xie C and Peng K 2002 Phys. Rev. A 66 032318
[4] Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
[5] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[6] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[7] Tan J and Fang M F 2006 Chin. Phys. 15 1895
[8] Cheng W W, Huang Y X, Liu T K and Li H 2007 Chin. Phys. 16 38
[9] Lee H J, Ahn D and Hwang S W 2002 Phys. Rev. A 66 024304
[10] Zheng X J, Cao S, Fang M F and Liao X P 2008 Chin. Phys. B 17 431
[11] Shimizu K, Imoto N and Mukai T 1999 Phys. Rev. A 59 1092
[12] Feng Y, Duan R Y and Ji Z F 2006 Phys. Rev. A 74 012310
[13] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[14] Fang X M, Zhu X W, Feng M, Mao X and Du F 2000 Phys. Rev. A 61 022307
[15] Peng Z H, Zou J and Liu X J 2008 J. Phys. B 41 065505
[16] Pan G Z, Yang M and Cao Z L 2009 Chin. Phys. B 18 2319
[17] Zou C L, Xue Z Y and Cao Z L 2008 Commun. Theor. Phys. 49 365
[18] Ye L and Guo G C 2005 Phys. Rev. A 71 034304
[19] He J, Ye L and Ni Z X 2008 Chin. Phys. B 17 1597
[20] Zheng S B 2003 Phys. Rev. A 68 035801 [20a] Zheng S B 2002 Phys. Rev. A 66 060303(R)
[21] Ye Y and Wee K C 2006 Phys. Rev. Lett. 96 060502
[22] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[1] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[2] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[3] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[4] Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state
Wang Mei-Yu(王美玉) and Yan Feng-Li(闫凤利) . Chin. Phys. B, 2011, 20(12): 120309.
[5] Scheme for implementing quantum dense coding with W-class state in cavity QED
He Juan(何娟), Ye Liu(叶柳), and Ni Zhi-Xiang(倪致祥). Chin. Phys. B, 2008, 17(5): 1597-1600.
[6] Scheme for implementing quantum dense coding with four-particle decoherence-free states in an ion trap
Zheng Xiao-Juan(郑小娟), Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2008, 17(2): 431-434.
[7] Quantum dense coding using a peculiar tripartite entangled state
Cheng Wei-Wen(程维文), Huang Yan-Xia(黄燕霞), Liu Tang-Kun(刘堂昆), and Li Hong(李宏). Chin. Phys. B, 2007, 16(1): 38-41.
[8] Scheme for sharing classical information via tripartite entangled states
Xue Zheng-Yuan (薛正远), Yi You-Min (易佑民), Cao Zhuo-Liang (曹卓良). Chin. Phys. B, 2006, 15(7): 1421-1424.
No Suggested Reading articles found!