Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010307    DOI: 10.1088/1674-1056/19/1/010307
GENERAL Prev   Next  

One scheme for remote quantum logical gates with the assistance of a classical field

Li Yan-Ling(李艳玲),Fang Mao-Fa(方卯发), and Zeng Ke(曾可)
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  A scheme, based on the two two-level atoms resonantly driven by the classical field separately trapped in two cavities coupled by an optical fibre, for the implementation of remote two-qubit gates is investigated. It is found that the quantum controlled-phase and swap gates can be achieved with the assistance of the classical field when there are detunings of the coupling quantum fields. Moreover, the influence of the dissipation of the cavities and the optical fibre is analysed while the spontaneous emission of the atoms can be effectively suppressed by introducing $\Lambda$-type atoms.
Keywords:  quantum entanglement      remote phase gate      remote swap gate  
Received:  30 March 2009      Revised:  28 April 2009      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10374025), the Natural Science Foundation of Hunan Province of China (Grant Nos. 07JJ3013 and 07JJ5003) and the Education Ministry of Hunan Province of China (Grant No. 06A038).

Cite this article: 

Li Yan-Ling(李艳玲),Fang Mao-Fa(方卯发), and Zeng Ke(曾可) One scheme for remote quantum logical gates with the assistance of a classical field 2010 Chin. Phys. B 19 010307

[1] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 5249
[2] Paternostro M, Kim M S and Palma G M 2003 J. Mod. Opt. 50 2075
[3] Di Vincenzo D P 1995 Phys. Rev. A 51 1015
[4] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5] Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
[6] Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 30
[7] Wu H Z, Yang Z B and Zheng S B 2008 Phys. Lett. A 372 2802
[8] Yang C P 2008 Phys. Lett. A 372 3168
[9] Duan L M, Madsen M J, Moehring, Maunz P, Kohn Jr R N and Monroe C 2006 Phys. Rev. A 73 062324
[10] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[11] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[12] Tang Y X, Lin X M, Lin G W, Chen L B and Huang X H 2008 Chin. Phys. B 17 4388
[13] Pellizzari T 1997 Phys. Rev. Lett. 79 5242
[14] Peng P and Li F L 2007 Phys. Rev. A 75 062320
[15] Chen L B, Ye M Y, Lin G W, Du Q H and Lin X M 2007 Phys. Rev. A 76 062304
[16] Song J, Xia Y and Song H S 2007 J. Phys. B: At. Mod. Opt. Phys. 40 4503
[17] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
[18] Lü X Y, Liu J B, Ding C L and Li J H 2008 Phys. Rev. A 78 032305
[19] Zheng S B 2002 Phys. Rev. A 66 060303(R)
[20] Solano E, Agarwal G S and Walther H 2002 quant-ph/0202071
[21] Werlang T, Guzmán R, Prado F O and Villas-B?as C J 2008 Phys. Rev. A 78 033820
[22] Tavis M and Cummings F W 1968 Phys. Rev. 170 379
[23] Y?nac M, Yu T and Eberly J H 2006 J. Phys. B: Mol. Opt. Phys. 39 S621
[24] Klimov A B 2000 Phys. Rev. A 61 063802
[25] Lougovski P, Solano E and Walther H 2005 Phys. Rev. A 71 013811
[26] Spillane S M, Kippenberg T J, Painter O J and Vahala K J 2003 Phys. Rev. Lett. 91 043902
[27] Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
[28] Spillane S M, Kippenberg T J and Vahala K J 2005 Phys. Rev. A 71 013817
[29] Buck J R and Kimble H J 2003 Phys. Rev. A 67 033806
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[11] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[14] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!