Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(9): 3611-3615    DOI: 10.1088/1674-1056/18/9/001
GENERAL   Next  

Approximate direct reduction method: infinite series reductions to the perturbed mKdV equation

Jiao Xiao-Yu(焦小玉)a) and Lou Sen-Yue(楼森岳)a)b)
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China; b Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painlevé II type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zero-order similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
Keywords:  perturbed mKdV equation      approximate direct reduction method      series reduction solutions  
Received:  10 December 2008      Revised:  07 January 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos 10735030, 10475055, 10675065 and 90503006), National Basic Research Program of China (Grant No 2007CB814800) and PCSIRT (Grant No IRT0734), the Research Fund of Postdoctoral of China (Grant No 20070410727) and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070248120).

Cite this article: 

Jiao Xiao-Yu(焦小玉) and Lou Sen-Yue(楼森岳) Approximate direct reduction method: infinite series reductions to the perturbed mKdV equation 2009 Chin. Phys. B 18 3611

[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[12] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!