Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(8): 3555-3562    DOI: 10.1088/1674-1056/18/8/070
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure and luminescence of Ca2Si5N8:Eu2+ phosphor for warm white light-emitting diodes

Wei Xiao-Dan(魏小丹)a), Cai Li-Yan(蔡丽艳)a), Lu Fa-Chun(鲁法春)a), Chen Xiao-Long(陈小龙)b), Chen Xue-Yuan(陈学元)c), and Liu Quan-Lin(刘泉林)a)†
a School of Materials Science & Engineering and State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Abstract  We have synthesized Ca2Si5N8:Eu2+ phosphor through a solid-state reaction and investigated its structural and luminescent properties. Our Rietveld refinement of the crystal structure of Ca2Si5N8 reveals that Eu atoms substituting for Ca atoms occupy two crystallographic positions. Between 10 K and 300 K, Ca2Si5N8:Eu2+ phosphor shows a broad red emission band centred at ~1.97 eV--2.01 eV. The gravity centre of the excitation band is located at 3.0 eV--3.31 eV. The centroid shift of the 5d levels of Eu2+ is determined to be ~1.17 eV, and the red-shift of the lowest absorption band to be ~0.54 eV due to the crystal field splitting. We have analysed the temperature dependence of PL by using a configuration coordinate model. The Huang--Rhys parameter = 6.0, the phonon energy $\hbar \nu =52$ meV, and the Stokes shift $\Delta S=0.57$ eV are obtained. The emission intensity maximum occurring at ~200 K can be explained by a trapping effect. Both photoluminescence (PL) emission intensity and decay time decrease with temperature increasing beyond 200~K due to the non-radiative process.
Keywords:  luminescence      structure      nitride      europium      white light-emitting diode (LED)  
Received:  24 October 2008      Revised:  19 January 2009      Accepted manuscript online: 
PACS:  78.55.Hx (Other solid inorganic materials)  
  61.66.Fn (Inorganic compounds)  
  71.70.Ch (Crystal and ligand fields)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 50672007), Program for the New Century Excellent Talents of China (Grant No NCET-06-0082), and the National Basic Research Program of China (Grant No 2007CB936202).

Cite this article: 

Wei Xiao-Dan(魏小丹), Cai Li-Yan(蔡丽艳), Lu Fa-Chun(鲁法春), Chen Xiao-Long(陈小龙), Chen Xue-Yuan(陈学元), and Liu Quan-Lin(刘泉林) Structure and luminescence of Ca2Si5N8:Eu2+ phosphor for warm white light-emitting diodes 2009 Chin. Phys. B 18 3555

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[10] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[11] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[12] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[13] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[14] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[15] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
No Suggested Reading articles found!