Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2893-2897    DOI: 10.1088/1674-1056/18/7/045
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Floating-zone growth and property characterizations of high-quality La2-xSrxCuO4 superconductor crystals

Shen Xiao-Li(慎晓丽), Li Zheng-Cai(李正才), Shen Cai-Xia(申彩霞), Lu Wei(陆伟), Dong Xiao-Li(董晓莉), Zhou Fang(周放), and Zhao Zhong-Xian(赵忠贤)
National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We have grown underdoped (x = 0.11, 0.12) and optimally doped (x = 0.16) La2-xSrxCuO4 single crystals by the traveling-solvent floating-zone technique. In order to prepare good quality cuprate crystals, we have made much effort to optimize the preparation procedures. For example, we haveadopted the sol--gel route to prepare a highly fine and homogeneous La2-xSrxCuO4 precursor powder for fabricating a very dense ceramic feed rod used for the floating-zone growth, and we have also used quite a slow growth rate. The high quality of the grown crystals has been verified by double-crystal x-ray rocking curves, with the full-width-at-half-maximum being only 113--150 arcseconds, which are the best data reported so far for La2-xSrxCuO4 crystals. The superconducting critical temperatures of the grown crystals are 30, 31 and 38.5 K for x = 0.11, 0.12 and 0.16 samples, respectively, according to magnetic measurements.
Keywords:  floating-zone crystal growth      sol--gel chemistry      x-ray rocking curves      superconductivity  
Received:  08 April 2009      Revised:  08 April 2009      Accepted manuscript online: 
PACS:  81.10.Fq (Growth from melts; zone melting and refining)  
  74.72.Dn  
  81.20.Fw (Sol-gel processing, precipitation)  
  74.62.-c (Transition temperature variations, phase diagrams)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  61.05.cp (X-ray diffraction)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB0L0302) and the National Natural Science Foundation of China (Grant No 10574149).

Cite this article: 

Shen Xiao-Li(慎晓丽), Li Zheng-Cai(李正才), Shen Cai-Xia(申彩霞), Lu Wei(陆伟), Dong Xiao-Li(董晓莉), Zhou Fang(周放), and Zhao Zhong-Xian(赵忠贤) Floating-zone growth and property characterizations of high-quality La2-xSrxCuO4 superconductor crystals 2009 Chin. Phys. B 18 2893

[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[13] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[14] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!