Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(5): 1985-1990    DOI: 10.1088/1674-1056/18/5/042
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase--field model of isothermal solidification with multiple grains growth

Feng Li(冯力)a), Wang Zhi-Ping(王智平)a)b), Zhu Chang-Sheng(朱昌盛)a), and Lu Yang(路阳)a)
a College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; b State Key Laboratory of Gansu Advanced Nonferrous Metal Material, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  This paper develops a new phase--field model for equiaxed dendrite growth of multiple grains in multicomponent alloys based on the Ginzberg--Landau theory and phase--field model of a single grain. Taking Al--Cu and Al--Cu--Mg alloys for example, it couples the concentration field and simulates the dendrite growth process of multiple grains during isothermal solidification. The result of the simulation shows dendrite competitive growth of multiple grains, and is reapplied to the process of dendrite growth in practical solidification.
Keywords:  phase--field      multiple grains      multicomponent alloys      equiaxed dendrites  
Received:  08 October 2008      Revised:  06 November 2008      Accepted manuscript online: 
PACS:  81.30.Fb (Solidification)  
  68.70.+w (Whiskers and dendrites (growth, structure, and nonelectronic properties))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 50804019) and Foundation for Doctoral Program of the Ministry of Education of China (Grant No 20070731001).

Cite this article: 

Feng Li(冯力), Wang Zhi-Ping(王智平), Zhu Chang-Sheng(朱昌盛), and Lu Yang(路阳) Phase--field model of isothermal solidification with multiple grains growth 2009 Chin. Phys. B 18 1985

[1] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[2] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[3] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[4] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[5] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[6] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[7] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[8] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[9] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[10] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[11] High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review
Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建). Chin. Phys. B, 2018, 27(11): 118103.
[12] A lattice Boltzmann-cellular automaton study on dendrite growth with melt convection in solidification of ternary alloys
Dong-Ke Sun(孙东科), Zhen-Hua Chai(柴振华), Qian Li(李谦), Guang Lin(林光). Chin. Phys. B, 2018, 27(8): 088105.
[13] Can secondary nucleation exist in ice banding of freezing colloidal suspensions?
Jia-Xue You(游家学), Jin-Cheng Wang(王锦程), Li-Lin Wang(王理林), Zhi-Jun Wang(王志军), Jun-Jie Li(李俊杰), Xin Lin(林鑫). Chin. Phys. B, 2016, 25(12): 128202.
[14] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[15] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
No Suggested Reading articles found!