Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 1221-1226    DOI: 10.1088/1674-1056/18/3/063
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical, dielectric and surface wetting properties of multi-walled carbon nanotubes/nylon-6 nanocomposites

Long Yun-Ze(龙云泽)a), Li Meng-Meng(李蒙蒙)a), Sui Wan-Mei(隋万美)a), Kong Qing-Shan(孔庆山)b), and Zhang Lei(张磊)a)
a College of Physics Science, Qingdao University, Qingdao 266071, China; b Laboratory of Fibre Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
Abstract  This paper reports that the multi-walled carbon nanotubes (MWCNT)/nylon-6 (PA6) nanocomposites with different MWCNT loadings have been prepared by a simple melt-compounding method. The electrical, dielectric, and surface wetting properties of the CNT/PA6 composites have been studied. The temperature dependence of the conductivity of the CNT/PA6 composite with 10.0 wt% CNT loading ($\sigma _{\rm RT} \sim 10^{-4}$ S/cm) are measured, and afterwards a charge-energy-limited tunnelling model (ln $\sigma (T) \sim T^{-1/2})$ is found. With increasing CNT weight percentage from 0.0 to 10.0 wt%, the dielectric constant of the CNT/PA6 composites enhances and the dielectric loss tangent increases two orders of magnitude. In addition, water contact angles of the CNT/PA6 composites increase and the composites with CNT loading larger than 2.0 wt%even become hydrophobic. The obtained results indicate that the electrical and surface properties of the composites have been significantly enhanced by the embedded carbon nanotubes.
Keywords:  carbon nanotubes      composites      electrical conductivity      dielectric property  
Received:  09 July 2008      Revised:  13 August 2008      Accepted manuscript online: 
PACS:  73.63.Fg (Nanotubes)  
  68.08.Bc (Wetting)  
  73.40.Gk (Tunneling)  
  77.22.Ch (Permittivity (dielectric function))  
  77.22.Gm (Dielectric loss and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10604038) and the Program for New Century Excellent Talents in University of China (Grant No NCET-07-0472).

Cite this article: 

Long Yun-Ze(龙云泽), Li Meng-Meng(李蒙蒙), Sui Wan-Mei(隋万美), Kong Qing-Shan(孔庆山), and Zhang Lei(张磊) Electrical, dielectric and surface wetting properties of multi-walled carbon nanotubes/nylon-6 nanocomposites 2009 Chin. Phys. B 18 1221

[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[4] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[8] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[12] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[13] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[14] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[15] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
No Suggested Reading articles found!