Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(2): 803-809    DOI: 10.1088/1674-1056/18/2/065
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure, ferroelectric and dielectric properties of Bi2WO6 with different bismuth content

Wang Xiao-Juan(王晓娟)a)b), Gong Zhi-Qiang(龚志强)b)c), Zhu Jun(朱骏)b), and Chen Xiao-Bing(陈小兵)b)
a College of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu 215500, ChinaCollege of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China; c Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China
Abstract  This paper reports that the Bi2WO6 ferroelectric ceramics with excess Bi2O3 of 0.0, 2.0, 3.5 and 5.0wt.% of the stoichiometric composition are prepared by the conventional solid-state reaction method. Their microstructure, ferroelectric properties, the concentration and mobility of the defects have been analysed systematically. With increasing Bi content, the remnant polarization decreases, and the broken-down voltage increases. The optimum Bi excess, 3.5, lowers the oxygen vacancy concentration, while further Bi-addition brings about more defects. The activation energies fitted from cole-cole plots are 0.97eV, 1.07eV, 1.18eV, and 1.33eV, respectively. This suggests that the mobility of the defects is weakened by Bi-addition, which may be due to the increase of the ratio of the number of Bi2O2 layers to that of the perovskite blocks.
Keywords:  ferroelectric ceramics      Bi2WO6      oxygen vacancy      x-ray photoemission spectroscopy  
Received:  30 April 2008      Revised:  16 August 2008      Accepted manuscript online: 
PACS:  77.22.Ch (Permittivity (dielectric function))  
  77.22.Ej (Polarization and depolarization)  
  77.84.Dy  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  61.72.J- (Point defects and defect clusters)  
  61.66.Fn (Inorganic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10274066) and the Natural Science Foundation of Jiangsu Province, China (Grant No BK2005052).

Cite this article: 

Wang Xiao-Juan(王晓娟), Gong Zhi-Qiang(龚志强), Zhu Jun(朱骏), and Chen Xiao-Bing(陈小兵) Structure, ferroelectric and dielectric properties of Bi2WO6 with different bismuth content 2009 Chin. Phys. B 18 803

[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[3] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[4] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[5] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[6] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[7] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[8] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[9] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[10] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[11] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[12] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[13] Intrinsic luminescence centers in γ- and θ-alumina nanoparticles
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani. Chin. Phys. B, 2017, 26(3): 036101.
[14] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[15] First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2
Wei Zhang(张玮), Jie Huang(黄洁). Chin. Phys. B, 2016, 25(5): 057103.
No Suggested Reading articles found!