Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4702-4706    DOI: 10.1088/1674-1056/18/11/015
GENERAL Prev   Next  

Stokes identification in an atomic ensemble using a filtering system

Luo Xiao-Ming(罗霄鸣)a)†,Ning Bo(宁波)a), Chen Li-Qing(陈丽清)a), Zhou Yue(周玥)b), Zhong Zhi-Ping(钟志萍)c), and Jiang Shuo(蒋硕)a)
a Physics Department, Tsinghua University, Beijing 100084, China; b Physics Department, Nanjing University, Nanjing 210093, China; c College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Polarization filtering and atomic cell filtering are applied in the identification of Stokes signals in an atomic ensemble, and reduce the noise to a level of 10-5 and 10-4 respectively. Good Stokes signals are then obtained. In this article the two filtering systems and the final Stokes output are presented, and the optimization of the polarization filtering system is highlighted.
Keywords:  quantum communication      Stokes      filtering  
Received:  20 May 2009      Revised:  26 May 2009      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10474053 and 10574162) and Tsinghua University 985 (Grant No 051110001).

Cite this article: 

Luo Xiao-Ming(罗霄鸣),Ning Bo(宁波), Chen Li-Qing(陈丽清), Zhou Yue(周玥), Zhong Zhi-Ping(钟志萍), and Jiang Shuo(蒋硕) Stokes identification in an atomic ensemble using a filtering system 2009 Chin. Phys. B 18 4702

[1] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[2] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[3] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[6] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[7] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[8] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[9] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[10] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[11] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[12] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[13] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
[14] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[15] Diffusion and collective motion of rotlets in 2D space
Daiki Matsunaga, Takumi Chodo, Takuma Kawai. Chin. Phys. B, 2020, 29(6): 064705.
No Suggested Reading articles found!