Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4695-4701    DOI: 10.1088/1674-1056/18/11/014
GENERAL Prev   Next  

Entanglement transfer between atoms in two distant cavities via an optical fibre

Xiao Xing(肖兴) and Fang Mao-Fa(方卯发)
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  This paper presents a treatment of the entanglement transfer between atoms in two distant cavities coupled by an optical fibre. If the atoms resonantly and collectively interact with the local single-mode cavity fields and the dipole--dipole interaction between the atoms is neglected, then it shows that a complete transfer of entanglement from one pair of atoms to another can be deterministically realized. Furthermore, it also investigates the effects of dipole--dipole interaction on entanglement transfer on the condition that the interaction between the atoms and the cavity is much weaker than the coupling between the cavity and the fibre.
Keywords:  entanglement transfer      dipole--dipole interaction      concurrence  
Received:  08 January 2009      Revised:  03 March 2009      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.81.-i (Fiber optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10374025), the Natural Science Foundation of Hunan Province of China (Grant No 07JJ3013) and the Education Ministry of Hunan Province of China (Grant No 06A038).

Cite this article: 

Xiao Xing(肖兴) and Fang Mao-Fa(方卯发) Entanglement transfer between atoms in two distant cavities via an optical fibre 2009 Chin. Phys. B 18 4695

[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[7] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[8] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[9] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[10] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[11] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[12] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[13] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[14] Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium
Wu Qin (吴琴), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(3): 034203.
[15] Controllable preparation of two-mode entangled coherent states in circuit QED
Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅). Chin. Phys. B, 2014, 23(11): 110303.
No Suggested Reading articles found!