Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4683-4689    DOI: 10.1088/1674-1056/18/11/012
GENERAL Prev   Next  

Generation of an N-qubit phase gate via atom--cavity nonidentical coupling

Zhang Ying-Qiao (张英俏) and Zhang Shou (张寿)
Centre for the Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China;Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom--cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When $N\rightarrow\infty$, the fidelity and success probability infinitely approach 1, but never exceed 1.
Keywords:  quantum phase gate      three-level atom      cavity QED  
Received:  09 April 2009      Revised:  29 April 2009      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60667001) and the Science Foundation of Yanbian University, China (Grant No 2007-31).

Cite this article: 

Zhang Ying-Qiao (张英俏) and Zhang Shou (张寿) Generation of an N-qubit phase gate via atom--cavity nonidentical coupling 2009 Chin. Phys. B 18 4683

[1] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[2] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[3] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[4] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[5] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[6] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[7] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
[8] Dynamics of a three-level V-type atom driven by a cavity photon and microwave field
Yan-Li Xue(薛艳丽), Shi-Deng Zhu(朱诗灯), Ju Liu(刘菊), Ting-Hui Xiao(肖廷辉), Bao-Hua Feng(冯宝华), Zhi-Yuan Li(李志远). Chin. Phys. B, 2016, 25(4): 044203.
[9] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[10] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[11] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[12] Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity
Xue Yan-Li (薛艳丽), Zhu Shi-Deng (朱诗灯), Li Jia-Fang (李家方), Ding Wei (丁伟), Feng Bao-Hua (冯宝华), Li Zhi-Yuan (李志远). Chin. Phys. B, 2015, 24(3): 034202.
[13] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[14] Emission spectrum of a harmonically trapped Λ-type three-level atom
Guo Hong (郭红), Tang Pei (汤佩). Chin. Phys. B, 2013, 22(5): 054204.
[15] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
No Suggested Reading articles found!