Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(9): 3264-3269    DOI: 10.1088/1674-1056/17/9/020
GENERAL Prev   Next  

Improving performance of optical fibre chaotic communication by dispersion compensation techniques

Zhang Jian-Zhong(张建忠), Wang Yun-Cai(王云才), and Wang An-Bang(王安帮)
Department of Physics, College of Science, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  This paper numerically investigates the effects of dispersion on optical fibre chaotic communication, and proposes a dispersion compensation scheme to improve the performance of optical fibre chaotic communication system. The obtained results show that the transmitter--receiver synchronization progressively degrades and the signal-to-noise ratio of the recovered message deteriorates as the fibre length increases due to the dispersion accumulation. Two segments of 2.5-km dispersion-compensating fibres are symmetrically placed at both ends of a segment of 245-km nonzero dispersion-shifted fibre with low dispersion in one compensation period. The numerical results show that the signal-to-noise ratio of the extracted 1 GHz sinusoidal message is improved from --2.92 dB to 15.38 dB by this dispersion compensation for the transmission distance of 500 km.
Keywords:  chaotic communication      fibre propagation      chaotic synchronization      message extraction      semiconductor laser      dispersion compensation.  
Received:  23 November 2007      Revised:  26 January 2008      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60777041 and 60577019) and the International Cooperation Project of Shanxi Province, China (Grant No 2007081019).

Cite this article: 

Zhang Jian-Zhong(张建忠), Wang Yun-Cai(王云才), and Wang An-Bang(王安帮) Improving performance of optical fibre chaotic communication by dispersion compensation techniques 2008 Chin. Phys. B 17 3264

[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[4] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[5] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[6] Cooperative behaviors of coupled nonidentical oscillators with the same equilibrium points
Wen Sun(孙文), Biwen Li(李必文), Wanli Guo(郭万里), Zhigang Zheng(郑志刚), and Shihua Chen(陈士华). Chin. Phys. B, 2021, 30(10): 100504.
[7] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[8] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[9] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[10] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[11] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[12] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[13] Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers
Tan Shao-Yang (谭少阳), Zhai Teng (翟腾), Zhang Rui-Kang (张瑞康), Lu Dan (陆丹), Wang Wei (王圩), Ji Chen (吉晨). Chin. Phys. B, 2015, 24(6): 064211.
[14] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[15] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
No Suggested Reading articles found!