Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(7): 2662-2669    DOI: 10.1088/1674-1056/17/7/051
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electron resonance-transmission through a driven quantum well with spin--orbit coupling

Zhang Cun-Xi(张存喜)a), Wang Rui(王瑞)b), Nie Yi-Hang(聂一行)a)c)†, and Liang Jiu-Qing(梁九卿)a)
a Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China; b Physical Department of Zhejiang Ocean University, Zhoushan 316000, Chinac Department of Physics, Yanbei Normal Institute, Datong 037000, China
Abstract  We have studied the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show that Dresselhaus spin--orbit coupling induces the splitting of asymmetric Fano-type resonance peaks in the conductivity, in which the dipole modulation and the homogeneous modulation are equivalent. Therefore, we predict that the dipole-type oscillation, which is more practical in the experimental setup, can be used to realize the tunable spin filters by adjusting the field oscillation-frequency and the amplitude as well.
Keywords:  Fano resonance      Floquet channel      spin--orbit coupling  
Received:  26 December 2007      Revised:  09 January 2008      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  72.25.Mk (Spin transport through interfaces)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10475053, 10775091 and 10774094) and the Shanxi Natural Science Foundation of China (Grant No 20051002).

Cite this article: 

Zhang Cun-Xi(张存喜), Wang Rui(王瑞), Nie Yi-Hang(聂一行), and Liang Jiu-Qing(梁九卿) Electron resonance-transmission through a driven quantum well with spin--orbit coupling 2008 Chin. Phys. B 17 2662

[1] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[2] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[3] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[4] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[5] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[8] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[9] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[10] Finite size effects on the helical edge states on the Lieb lattice
Rui Chen(陈锐), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(6): 067204.
[11] Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure
Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏). Chin. Phys. B, 2016, 25(5): 057303.
[12] Superscattering-enhanced narrow band forward scattering antenna
Hu De-Jiao (胡德骄), Zhang Zhi-You (张志友), Du Jing-Lei (杜惊雷). Chin. Phys. B, 2015, 24(10): 104202.
[13] Control of light scattering by nanoparticles with optically-induced magnetic responses
Liu Wei (刘伟), Andrey E. Miroshnichenko, Yuri S. Kivshar. Chin. Phys. B, 2014, 23(4): 047806.
[14] Interfacial spin Hall current in a Josephson junction with Rashba spin–orbit coupling
Yang Zhi-Hong(杨志红), Yang Yong-Hong(杨永宏), and Wang Jun(汪军) . Chin. Phys. B, 2012, 21(5): 057402.
[15] Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects
Zhang Cun-Xi(张存喜), Ding Xiu-Huan(丁秀欢), Wang Rui(王瑞) Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民) . Chin. Phys. B, 2012, 21(3): 034202.
No Suggested Reading articles found!