Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(7): 2574-2579    DOI: 10.1088/1674-1056/17/7/039
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Growth and collapse of laser-induced bubbles in glycerol--water mixtures

Liu Xiu-Mei(刘秀梅), He Jie(贺杰), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武)
Department of Applied Physics, Nanjing University of Science { Technology, Nanjing 210094, China
Abstract  Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh--Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.
Keywords:  optical beam deflection      cavitation bubble      viscosity  
Received:  30 October 2007      Revised:  24 December 2007      Accepted manuscript online: 
PACS:  47.55.dp (Cavitation and boiling)  
  47.55.dd (Bubble dynamics)  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60578015), the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institute of China (2003-2008), and the National Key Opening Experiment Foundation of Laser Technology of China (Grant No 2005).

Cite this article: 

Liu Xiu-Mei(刘秀梅), He Jie(贺杰), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武) Growth and collapse of laser-induced bubbles in glycerol--water mixtures 2008 Chin. Phys. B 17 2574

[1] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[2] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[3] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[6] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[7] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[8] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[9] Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study
Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀). Chin. Phys. B, 2016, 25(6): 066102.
[10] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[11] Viscosities and their correlations with structures of Cu-Ag melts
Zhao Yan (赵岩), Hou Xiao-Xia (侯晓霞). Chin. Phys. B, 2015, 24(9): 096601.
[12] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang (柯鸿堂), Liu Xiao-He (刘小禾), Guo Ming-Min (郭明旻), Wu Zheng (吴正). Chin. Phys. B, 2015, 24(9): 098901.
[13] Relationship between Voronoi entropy and the viscosity of Zr36Cu64 alloy melt based on molecular dynamics
Gao Wei (高伟), Feng Shi-Dong (冯士东), Zhang Shi-Liang (张世良), Qi Li (戚力), Liu Ri-Ping (刘日平). Chin. Phys. B, 2015, 24(12): 126102.
[14] Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection
H. M. El-Hawary, Mostafa A. A. Mahmoud, Reda G. Abdel-Rahman, Abeer S. Elfeshawey. Chin. Phys. B, 2014, 23(9): 090203.
[15] Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects
Ma Xiao-Juan (马小娟), Hao Bin-Bin (郝斌斌), Ma Hai-Xia (马海霞), Liu Fu-Sheng (刘福生). Chin. Phys. B, 2014, 23(9): 096204.
No Suggested Reading articles found!