Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(7): 2339-2345    DOI: 10.1088/1674-1056/17/7/003
GENERAL Prev   Next  

Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

Huang Li-Yuan(黄利元) and Fang Mao-Fa(方卯发)
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg $XXX$ chain under the Dzyaloshinski--Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.
Keywords:  thermal entanglement      concurrence      entanglement teleportation  
Received:  18 November 2007      Revised:  25 December 2007      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10374025) and the Education Ministry of Hunan Province, China (Grant No 06A038).

Cite this article: 

Huang Li-Yuan(黄利元) and Fang Mao-Fa(方卯发) Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state 2008 Chin. Phys. B 17 2339

[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[7] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[8] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[9] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[10] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[11] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[12] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[13] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[14] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[15] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
No Suggested Reading articles found!