Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2116-2123    DOI: 10.1088/1674-1056/17/6/029
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A density functional theoretical investigation of RhSin(n=1--6) clusters

Ren Zhao-Yu(任兆玉)a), Hou Ru(侯茹)a)b), Guo Ping(郭平)c), Gao Ji-Kai(高继开)a), Du Gong-He(杜恭贺)a), and Wen Zhen-Yi(文振翼)d)
a Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China; b Physics Department of Shangluo University, Shangluo 726000, China; c Physics Department of Northwest University, Xi'an 710069, China; d Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  This paper computationally investigates the RhSi$_{n}(n=1$--$6)$ clusters by using a density functional approach. Geometry optimizations of the RhSi$_{n}(n=1$--$6)$ clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSi$_{n}(n=1$--$6)$ clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSi$_{n}(n=1$--$6)$ isomers keep an analogous framework of the corresponding Si$_{n + 1 }$ clusters, the RhSi$_{3}$ is the most stable cluster in RhSi$_{n}(n=1$--$6)$ isomers. Furthermore, the charges of the lowest-energy RhSi$_{n}(n=1$--$6)$ clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSi$_{n}(n=1$--$6)$ arises from the 4d orbits of Rh atom. Finally, compared with the Si$_{n+1}$ cluster, the chemical stability RhSi$_{n}$ clusters are universally improved.
Keywords:  density functional theory      RhSi$_{n}$ clusters      geometrical stability  
Received:  31 May 2007      Revised:  23 October 2007      Accepted manuscript online: 
PACS:  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  31.15.E-  
  33.15.Ry (Ionization potentials, electron affinities, molecular core binding energy)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10247007), the Natural Science Foundation of Shaanxi Province (Grant No 2002A09), and the Special Item Foundation of Educational Committee of Shaanxi Province (Grant No 02JK05

Cite this article: 

Ren Zhao-Yu(任兆玉), Hou Ru(侯茹), Guo Ping(郭平), Gao Ji-Kai(高继开), Du Gong-He(杜恭贺), and Wen Zhen-Yi(文振翼) A density functional theoretical investigation of RhSin(n=1--6) clusters 2008 Chin. Phys. B 17 2116

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!