Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(2): 520-528    DOI: 10.1088/1674-1056/17/2/029
GENERAL Prev   Next  

Robust adaptive synchronization of chaotic neural networks by slide technique

Lou Xu-Yang(楼旭阳)a)b)† and Cui Bao-Tong(崔宝同)a)‡
a College of Communication and Control Engineering, Jiangnan University, Wuxi 214122, China; b CSIRO Division of Mathematical and Information Sciences, University of Adelaide, Urrbrae 5064, Australia
Abstract  In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.
Keywords:  robust adaptive synchronization      slide technique      chaotic neural networks      time-varying delay  
Received:  01 May 2007      Revised:  03 September 2007      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60674026), the Key Project of Chinese Ministry of Education (Grant No 107058), the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016) and the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B$_-$116z).

Cite this article: 

Lou Xu-Yang(楼旭阳) and Cui Bao-Tong(崔宝同) Robust adaptive synchronization of chaotic neural networks by slide technique 2008 Chin. Phys. B 17 520

[1] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[2] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[3] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[4] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[5] Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control
R. Rakkiyappan, R. Sivasamy, S. Lakshmanan. Chin. Phys. B, 2014, 23(6): 060504.
[6] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[7] Robust H cluster synchronization analysis of Lurie dynamical networks
Guo Ling (郭凌), Nian Xiao-Hong (年晓红), Pan Huan (潘欢), Bing Zhi-Tong (邴志桐). Chin. Phys. B, 2014, 23(4): 040501.
[8] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[9] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[10] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[11] Leader–following consensus control for networked multi-teleoperator systems with interval time-varying communication delays
M. J. Park, S. M. Lee, J. W. Son, O. M. Kwon, E. J. Cha. Chin. Phys. B, 2013, 22(7): 070506.
[12] H synchronization of chaotic neural networks with time-varying delays
O. M. Kwon, M. J. Park, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2013, 22(11): 110504.
[13] Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes
Wang Shu-Guo(王树国) and Yao Hong-Xing(姚洪兴) . Chin. Phys. B, 2012, 21(5): 050508.
[14] Cluster projective synchronization of complex networks with nonidentical dynamical nodes
Yao Hong-Xing (姚洪兴), Wang Shu-Guo (王树国 ). Chin. Phys. B, 2012, 21(11): 110506.
[15] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali . Chin. Phys. B, 2011, 20(8): 080201.
No Suggested Reading articles found!