Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(10): 3725-3728    DOI: 10.1088/1674-1056/17/10/032
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

High efficient scheme for remote state preparation with cavity QED

Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Xu Yan-Qiu(徐彦秋)
Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
Abstract  In this paper, a scheme is proposed for remote state preparation (RSP) with cavity quantum electrodynamics (QED). In our scheme, two observers share two-atom nonmaximally entangled state as quantum channels and can realize remote preparation of state of an atom. We also propose a generalization for remote preparation of $N$-atom entangled state by ($N$+1)-atom GHZ-like state ($N \ge 2)$. By this scheme, one single-atom projective measurement is enough for the RSP of a qubit or $N$-atom entangled state, and the probability of success for RSP is unity. Furthermore, we have considered the case where observers use W-like state as quantum channels to realize RSP of a qubit. We compare our scheme with existing ones.
Keywords:  remote state preparation      cavity QED      entangled state  
Received:  13 November 2007      Revised:  09 June 2008      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos 0612006 and 2007GZW0819), the Scientific Research Foundation of Jiangxi Provincial Department of Education, China (Grant No [2007]191), and Funds from East China Jiaotong University.

Cite this article: 

Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Xu Yan-Qiu(徐彦秋) High efficient scheme for remote state preparation with cavity QED 2008 Chin. Phys. B 17 3725

[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[3] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[4] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[5] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[6] Optical complex integration-transform for deriving complex fractional squeezing operator
Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(3): 030306.
[7] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[8] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[9] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[10] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[11] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[12] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[13] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[14] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[15] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
No Suggested Reading articles found!