Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(1): 92-97    DOI: 10.1088/1674-1056/17/1/017
GENERAL Prev   Next  

Passive adaptive control of chaos in synchronous reluctance motor

Wei Du-Qu(韦笃取) and Luo Xiao-Shu(罗晓曙)
College of Physics and Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.
Keywords:  chaos control      passive control      adaptive control      synchronous reluctance motor  
Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 70571017).

Cite this article: 

Wei Du-Qu(韦笃取) and Luo Xiao-Shu(罗晓曙) Passive adaptive control of chaos in synchronous reluctance motor 2008 Chin. Phys. B 17 92

[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[3] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[4] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[5] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[6] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[7] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[8] Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Ning Bin (宁滨), Roberts Clive, Chen Lei (陈磊), Sun Xu-Bin (孙绪彬). Chin. Phys. B, 2015, 24(9): 090506.
[9] Mittag-Leffler synchronization of fractional-order uncertain chaotic systems
Wang Qiao (王乔), Ding Dong-Sheng (丁冬生), Qi Dong-Lian (齐冬莲). Chin. Phys. B, 2015, 24(6): 060508.
[10] Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach
Wei Wei (魏伟). Chin. Phys. B, 2015, 24(10): 100503.
[11] Neural adaptive chaotic control with constrained input using state and output feedback
Gao Shi-Gen (高士根), Dong Hai-Rong (董海荣), Sun Xu-Bin (孙绪彬), Ning Bin (宁滨). Chin. Phys. B, 2015, 24(1): 010501.
[12] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[13] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(2): 020204.
[14] Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities
Muhammad Riaz, Muhammad Rehan, Keum-Shik Hong, Muhammad Ashraf, Haroon Ur Rasheed. Chin. Phys. B, 2014, 23(11): 110502.
[15] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚). Chin. Phys. B, 2013, 22(7): 070504.
No Suggested Reading articles found!