Please wait a minute...
Chinese Physics, 2007, Vol. 16(8): 2194-2199    DOI: 10.1088/1009-1963/16/8/007
GENERAL Prev   Next  

A controlled quantum teleportation scheme of an N-particle unknown state via three-particle W1 states

Xiu Xiao-Ming(修晓明), Dong Li(董莉), Gao Ya-Jun(高亚军), and Chi Feng(迟锋)
Department of Physics, Bohai University, Jinzhou 121000, China
Abstract  In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unknown state is transmitted from the sender to the recipient under the control of all supervisors. It can be realized with a certain probability. After the sender makes Bell-state measurements and the supervisors perform the computational basis measurements, the recipient will introduce auxiliary particles and carry out unitary transformations depending on classical information from the sender and the supervisors. Finally, the computational basis measurement will be performed by the recipient to confirm whether the teleportation succeeds or not. The successful completion of the scheme relies on all supervisors' cooperation. In addition, the fidelity and security of the scheme are discussed.
Keywords:  quantum information      controlled quantum teleportation      W1 state  
Received:  13 October 2006      Revised:  23 November 2006      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10647101).

Cite this article: 

Xiu Xiao-Ming(修晓明), Dong Li(董莉), Gao Ya-Jun(高亚军), and Chi Feng(迟锋) A controlled quantum teleportation scheme of an N-particle unknown state via three-particle W1 states 2007 Chinese Physics 16 2194

[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[3] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[4] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[5] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[8] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[9] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[10] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[11] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[12] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[13] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[14] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[15] Determining spatial structures of ion crystals by simulated annealing method
Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2017, 26(8): 080303.
No Suggested Reading articles found!