Please wait a minute...
Chinese Physics, 2007, Vol. 16(5): 1434-1439    DOI: 10.1088/1009-1963/16/5/044
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Charge transfer and variation of potential distributions in the formation of 4, 4'-bipyridine molecular junction

Li Zong-Liang(李宗良), Zou Bin(邹斌), Yan Xun-Wang(闫循旺), and Wang Chuan-Kui(王传奎)
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  In this paper the charge transfer and variation of potential distribution upon formation of 4, 4'-bipyridine molecular junction have been investigated by applying hybrid density-functional theory (B3LYP) at ab initio level. The numerical results show that there exist charge-accumulation and charge-depletion regions located at respective inside and outside of interfaces. The variation of potential distribution is obvious at interfaces. When distance between electrodes is changed, the charge transfer and variation of potential distribution clearly have distance-dependent performance. It is demonstrated that the contact structure between the molecule and electrodes is another key factor for dominating the properties of molecular junction. The qualitative explanation for experimental results is suggested.
Keywords:  charge transfer      potential distribution      molecular junction  
Received:  17 June 2006      Revised:  24 October 2006      Accepted manuscript online: 
PACS:  73.40.Cg (Contact resistance, contact potential)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.70.-d (Level splitting and interactions)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No~10674084), the Natural Science Foundation of Shandong Province, China (Grant No~Y2004A08) and the Doctorate Foundation of the State Education Ministry of China (Grant No~20040

Cite this article: 

Li Zong-Liang(李宗良), Zou Bin(邹斌), Yan Xun-Wang(闫循旺), and Wang Chuan-Kui(王传奎) Charge transfer and variation of potential distributions in the formation of 4, 4'-bipyridine molecular junction 2007 Chinese Physics 16 1434

[1] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[4] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[7] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[8] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[9] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[10] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[11] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[12] Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根). Chin. Phys. B, 2018, 27(5): 058101.
[13] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[14] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[15] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
No Suggested Reading articles found!