Please wait a minute...
Chinese Physics, 2007, Vol. 16(5): 1229-1232    DOI: 10.1088/1009-1963/16/5/010
GENERAL Prev   Next  

Secure deterministic communication in a quantum loss channel using quantum error correction code

Wu Shuang(吴双), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖)
Department of Physics, School of Science, National University of Defense Technology, Changsha 410073, China
Abstract  The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.
Keywords:  quantum error correction      quantum loss channel      deterministic communication  
Received:  09 June 2006      Revised:  01 December 2006      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No~10504042).

Cite this article: 

Wu Shuang(吴双), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖) Secure deterministic communication in a quantum loss channel using quantum error correction code 2007 Chinese Physics 16 1229

[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[3] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[4] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[5] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[6] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
[7] Secure deterministic communication scheme based on quantum remote state preparation
Guo Ying(郭迎), Chen Zhi-Gang(陈志刚), and Zeng Gui-Hua(曾贵华). Chin. Phys. B, 2007, 16(9): 2549-2556.
No Suggested Reading articles found!