Please wait a minute...
Chinese Physics, 2007, Vol. 16(3): 746-752    DOI: 10.1088/1009-1963/16/3/031
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Acousto-electric well logging by eccentric source and extraction of shear wave

Cui Zhi-Wen(崔志文)a)c)†, Wang Ke-Xie(王克协)a), Hu Heng-Shan(胡恒山)b), and Sun Jian-Guo(孙建国)c)
a Department of Acoustics and Microwave Physics, School of Physics, Jilin University, Changchun 130021, China; b Department of Astronautics and Mechanics, Harbin Institute of Technology, Harbin 150001, China; c College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
Abstract  The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered. It is shown that the acoustic field inside the borehole, converted electric and magnetic fields and coupled fields outside the borehole are composed of an infinitude of multipole fields with different orders. The numerical results show that both the electromagnetic waves and the seismoelectric field in the borehole, and the three components of both electric field and magnetic field can be detected. Measurements on the borehole axis will be of advantage to determining shear velocity information. The components of the symmetric and nonsymmetric acoustic and electromagnetic fields can be strengthened or weakened by adding or subtracting the two full waveforms logged in some azimuths. It may be a new method of directly measuring the shear wave velocity by using the borehole seismoelectric effect.
Keywords:  porous media      seismoelectric      well logging      acoustic source  
Received:  06 June 2006      Revised:  12 September 2006      Accepted manuscript online: 
PACS:  43.20.Bi (Mathematical theory of wave propagation)  
  91.30.Cd (Body wave propagation)  
  93.85.Fg (Downhole methods)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos 10534040 and 10272038) and Doctorate Foundation of the State Education Ministry of China (Grant Nos 20040183045 and 20030183052).

Cite this article: 

Cui Zhi-Wen(崔志文), Wang Ke-Xie(王克协), Hu Heng-Shan(胡恒山), and Sun Jian-Guo(孙建国) Acousto-electric well logging by eccentric source and extraction of shear wave 2007 Chinese Physics 16 746

[1] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[2] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[5] Experimental study and theoretical analysis of fluid resistance in porous media of glass spheres
Tong Wang(王彤), Kun-Can Zheng(郑坤灿), Yu-Peng Jia(贾宇鹏), Cheng-Lu Fu(付承鹭), Zhi-Jun Gong(龚志军), Wen-Fei Wu(武文斐). Chin. Phys. B, 2017, 26(7): 074701.
[6] Seismoelectric wave propagation modeling in a borehole in water-saturated porous medium having an electrochemical interface
Hao-Ran Ding(丁浩然), Jin-Xia Liu(刘金霞), Zhi-Wen Cui(崔志文), Tribikram Kundu. Chin. Phys. B, 2017, 26(12): 124301.
[7] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
[8] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[9] Cross-diffusive effects on the onset of the double-diffusive convection in a horizontal saturated porous fluid layer heated and salted from above
Rajib Basu, G. C. Layek. Chin. Phys. B, 2013, 22(5): 054702.
[10] Tortuosity for streamlines in porous media
Kou Jian-Long(寇建龙), Tang Xue-Ming(唐学明), Zhang Hai-Yan(张海燕), Lu Hang-Jun(陆杭军), Wu Feng-Min(吴锋民), Xu You-Sheng(许友生), and Dong Yong-Sheng(董永胜) . Chin. Phys. B, 2012, 21(4): 044701.
[11] Simulation of the relationship between porosity and tortuosity in porous media with cubic particles
Tang Xiao-Wu (唐晓武), Sun Zu-Feng (孙祖峰), Cheng Guan-Chu (程冠初). Chin. Phys. B, 2012, 21(10): 100201.
[12] A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference
Zhao Hai-Bo(赵海波), Wang Xiu-Ming(王秀明), and Chen Hao(陈浩). Chin. Phys. B, 2006, 15(12): 2819-2827.
[13] Velocity overshoot of start-up flow for a Maxwellfluid in a porous half-space
Tan Wen-Chang(谭文长). Chin. Phys. B, 2006, 15(11): 2644-2650.
[14] Numerical simulation for separation of multi-phase immiscible fluids in porous media
Wu Bai-Zhi (吴柏志), Xu You-Sheng (许友生), Liu Yang (刘扬), Huang Guo-Xiang (黄国翔). Chin. Phys. B, 2005, 14(10): 2046-2051.
[15] Numerical analysis of fluid flow through a cylinder array using a lattice Boltzmann model
Dong Ping (董平), Feng Shi-De (冯士德), Zhao Ying (赵颖). Chin. Phys. B, 2004, 13(4): 434-440.
No Suggested Reading articles found!