Please wait a minute...
Chinese Physics, 2007, Vol. 16(12): 3610-3615    DOI: 10.1088/1009-1963/16/12/010
GENERAL Prev   Next  

Finite entropy of Schwarzschild anti-de sitter black hole in different coordinates

Ding Chi-Kun(丁持坤) and Jing Ji-Liang(荆继良)
Institute of Physics, Hunan Normal University, Key Laboratory of Quantum Structures andQuantum Control (Hunan Normal University), Ministry of Education, Changsha 410081, China
Abstract  This paper studies the finite statistical-mechanical entropy of the Schwarzschild anti-de Sitter (AdS) spacetime arising from quantum massless scalar field by using the `brick wall' approach in the Painlevé and Lemaitre coordinates. At first glance, it seems that the results would be different from that in the Schwarzschild-like coordinate since both the Painlev\'e and the Lemaitre spacetimes do not possess the event horizon obviously. However, this paper proves that the entropies in these coordinates are exactly equivalent to that in the Schwarzschild-like coordinate.
Keywords:  black hole      entropy      Painlevé coordinate      Lemaitre coordinate  
Accepted manuscript online: 
PACS:  04.70.-s (Physics of black holes)  
  97.60.Lf (Black holes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10675045) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No 200317) and the SRFDP (Grant No 20040542003).

Cite this article: 

Ding Chi-Kun(丁持坤) and Jing Ji-Liang(荆继良) Finite entropy of Schwarzschild anti-de sitter black hole in different coordinates 2007 Chinese Physics 16 3610

[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[3] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[4] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[5] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[6] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[7] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[8] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[9] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Information flow between stock markets: A Koopman decomposition approach
Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2022, 31(1): 018902.
[14] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[15] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
No Suggested Reading articles found!