Please wait a minute...
Chinese Physics, 2007, Vol. 16(1): 272-276    DOI: 10.1088/1009-1963/16/1/046
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Extended Holstein polaron model for charge transfer in dry DNA

Liu Tao(刘涛)a), Wang Yi(王忆)b)c), and Wang Ke-Lin(汪克林)a)c)
a School of Science, Southwest University of Science and Technology, Mianyang 621002, China; b Institute of Thin Films and Nano Materials, Wuyi University, Jiangmen 529020, China; c Department of Astronomy and Applied Physics,University of Science and Technology of China, Hefei 230026, China
Abstract  The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent finite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain. Our theoretical results of binding energy Eb, probability amplitude of charge carrier $\phi$ and the relation between energy and charge--lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.
Keywords:  Holstein polaron model      dry DNA      charge transfer      variational method  
Received:  05 September 2005      Revised:  26 July 2006      Accepted manuscript online: 
PACS:  87.14.G- (Nucleic acids)  
  36.20.Fz (Constitution (chains and sequences))  
  87.10.-e (General theory and mathematical aspects)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
  87.15.N- (Properties of solutions of macromolecules)  
Fund: Project supported by the National Nature Science Foundation of China (Grant No 50272063) and \ the Foundation for Excellent Talents of Anhui Province, China (Grant No 2001Z016).

Cite this article: 

Liu Tao(刘涛), Wang Yi(王忆), and Wang Ke-Lin(汪克林) Extended Holstein polaron model for charge transfer in dry DNA 2007 Chinese Physics 16 272

[1] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[4] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[5] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[6] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[7] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[8] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[9] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[10] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[11] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[12] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[13] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[14] Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根). Chin. Phys. B, 2018, 27(5): 058101.
[15] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
No Suggested Reading articles found!