Please wait a minute...
Chinese Physics, 2006, Vol. 15(9): 1953-1959    DOI: 10.1088/1009-1963/15/9/009
GENERAL Prev   Next  

Influence of quantum degeneracy on the performance of a gas Stirling engine cycle

He Ji-Zhou(何济洲), Mao Zhi-Yuan(毛之远), and Wang Jian-Hui(王建辉)
Department of Physics, Nanchang University, Nanchang 330047, China
Abstract  Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle.
Keywords:  Stirling engine cycle      ideal quantum gas      regenerative characteristics      thermal efficiency  
Received:  03 February 2006      Revised:  21 March 2006      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ar  
  03.65.-w (Quantum mechanics)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10465003), the Natural Science Foundation of Jiangxi Province, China (Grant No 0412011) and Science Foundation of Jiangxi Education Bureau, China.

Cite this article: 

He Ji-Zhou(何济洲), Mao Zhi-Yuan(毛之远), and Wang Jian-Hui(王建辉) Influence of quantum degeneracy on the performance of a gas Stirling engine cycle 2006 Chinese Physics 15 1953

[1] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[8] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[9] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[10] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[11] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[12] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[13] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[14] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[15] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
No Suggested Reading articles found!