Please wait a minute...
Chinese Physics, 2006, Vol. 15(4): 708-714    DOI: 10.1088/1009-1963/15/4/010
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Influences of phase shift on superresolution performances of annular filters

Liu Xi-Min (刘锡民)ab, Liu Li-Ren (刘立人)a, Bai Li-Hua (白丽华)ab 
a Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, Chinab Graduate School of Chinese Academy of Sciences, Beijing 100049, China
Abstract  This paper investigates the influences of phase shift on superresolution performances of annular filters. Firstly, it investigates the influence of phase shift on axial superresolution. It proves theoretically that axial superresolution can not be obtained by two-zone phase filter with phase shift $\pi$, and it gets the phase shift with which axial superresolution can be brought by two-zone phase filter. Secondly, it studies the influence of phase shift on transverse superresolution. It finds that the three-zone phase filter with arbitrary phase shift has an almost equal optimal transverse gain to that of commonly used three-zone phase filter, but can produce a much higher axial superresolution gain. Thirdly, it investigates the influence of phase shift on three-dimensional superresolution. Three-dimensional superresolution capability and design margin of three-zone complex filter with arbitrary phase shift are obtained, which presents the theoretical basis for three-dimensional superresolution design. Finally, it investigates the influence of phase shift on focal shift. To obtain desired focal shifts, it designs a series of three-zone phase filters with different phase shifts. A spatial light modulator (SLM) is used to implement the designed filters. By regulating the voltage imposed on the SLM, an accurate focal shift control is obtained.
Keywords:  superresolution      filter design      focal shift      annular filters  
Received:  20 September 2005      Revised:  23 November 2005      Accepted manuscript online: 
PACS:  42.30.Va (Image forming and processing)  
  42.15.Eq (Optical system design)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  42.79.Hp (Optical processors, correlators, and modulators)  
Fund: Project supported by the Science and Technology Committee of China (Grant No 2002CCA03500) and the National Natural Science Foundation of China (Grant No 60177016).

Cite this article: 

Liu Xi-Min (刘锡民), Liu Li-Ren (刘立人), Bai Li-Hua (白丽华) Influences of phase shift on superresolution performances of annular filters 2006 Chinese Physics 15 708

[1] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[4] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[5] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[6] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[7] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[8] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[9] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[10] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[11] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[12] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[13] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[14] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[15] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
No Suggested Reading articles found!