Please wait a minute...
Chinese Physics, 2006, Vol. 15(1): 219-223    DOI: 10.1088/1009-1963/15/1/036
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Anisotropic growth of multigrain in equiaxial solidification simulated with the phase field method

Li Mei-E (李梅娥)a, Xiao Zhi-Ying (肖志英)a, Yang Gen-Cang (杨根仓)b, Zhou Yao-He (周尧和)b
a School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; b State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The phase field method has been mainly used to simulate the growth of a single crystal in the past. But polycrystalline materials predominate in engineering. In this work, a phase field model for multigrain solidification is developed, which takes into account the random crystallographic orientations of crystallites and preserves the rotational invariance of the free energy. The morphological evolution of equiaxial multigrain solidification is predicted and the effect of composition on transformation kinetics is studied. The numerical results indicate that due to the soft impingement of grains the Avrami exponent varies with the initial melt composition and the solidification fraction.
Keywords:  multigrain      solidification      transformation kinetics      phase field method  
Received:  13 April 2005      Revised:  24 May 2005      Accepted manuscript online: 
PACS:  81.30.Fb (Solidification)  
  61.50.-f (Structure of bulk crystals)  
  65.40.G- (Other thermodynamical quantities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 50395103 and 50271057).

Cite this article: 

Li Mei-E (李梅娥), Xiao Zhi-Ying (肖志英), Yang Gen-Cang (杨根仓), Zhou Yao-He (周尧和) Anisotropic growth of multigrain in equiaxial solidification simulated with the phase field method 2006 Chinese Physics 15 219

[1] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[4] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[5] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[8] Phase field simulation of single bubble behavior under an electric field
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Sheng Xu(徐升). Chin. Phys. B, 2018, 27(9): 094704.
[9] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
[10] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[11] High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review
Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建). Chin. Phys. B, 2018, 27(11): 118103.
[12] Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters
Yuan-Yuan Wang(王园园), Jian-Hua Ding(丁建华), Wen-Bo Liu(柳文波), Shao-Song Huang(黄绍松), Xiao-Qin Ke(柯小琴), Yun-Zhi Wang(王云志), Chi Zhang(张弛), Ji-Jun Zhao(赵纪军). Chin. Phys. B, 2017, 26(2): 026102.
[13] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[14] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[15] Structural origin underlying the effect of cooling rate on solidification point
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国). Chin. Phys. B, 2015, 24(11): 116101.
No Suggested Reading articles found!