Please wait a minute...
Chinese Physics, 2005, Vol. 14(4): 690-696    DOI: 10.1088/1009-1963/14/4/009
GENERAL Prev   Next  

Evolution of spin-dependent atomic wave packets in a harmonic potential

Wen Ling-Hua (文灵华)abc, Liu Min (刘敏)abc, Kong Ling-Bo (孔令波)abc, Chen Ai-Xi (陈爱喜)abc, Zhan Ming-Sheng (詹明生)ab 
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Centre for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; c  Graduate School, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  We have investigated theoretically the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential. For a Bose-condensed gas, which undergoes a Mott insulator transition and a spin-dependent transport, the atomic wavefunction can be described by an entangled single-atom state. Due to the confinement of the harmonic potential, the density distributions exhibit periodic decay and revival, which is different from the case of free expansion after switching off the combined harmonic and optical lattice potential.
Keywords:  Bose--Einstein condensate      density distribution      spin-dependent optical lattice      magnetic trap  
Received:  10 October 2004      Revised:  06 November 2004      Accepted manuscript online: 
PACS:  03.75.-b  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10474119 and 10474117),by the National Fundamental Research Programme of China (Grant No001CB309309), and also by funds from the Chinese Academy of Sciences.

Cite this article: 

Wen Ling-Hua (文灵华), Liu Min (刘敏), Kong Ling-Bo (孔令波), Chen Ai-Xi (陈爱喜), Zhan Ming-Sheng (詹明生) Evolution of spin-dependent atomic wave packets in a harmonic potential 2005 Chinese Physics 14 690

[1] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[2] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[3] Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging
Zheng Xu(徐征), Xiang Li(李想), Pan Guo(郭盼), Jia-Min Wu(吴嘉敏). Chin. Phys. B, 2018, 27(5): 058702.
[4] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[5] Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire
Li Qiu-Yan (李秋艳), Zhao Fei (赵飞), He Peng-Bin (贺鹏斌), Li Zai-Dong (李再东). Chin. Phys. B, 2015, 24(3): 037508.
[6] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan (王妍), Hu Zhao-Hui (胡朝晖), Qi Lu (亓鲁). Chin. Phys. B, 2015, 24(2): 024203.
[7] Photostop of iodine atoms from electrically oriented ICl molecules
Bao Da-Xiao (暴大小), Deng Lian-Zhong (邓联忠), Xu Liang (许亮), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(11): 113702.
[8] Numerical study of physical properties of resistive wall modes in tokamaks
Xia Xin-Nian (夏新念), Liu Yue (刘悦), Liu Chao (刘超), He Yu-Ling (何玉玲), Xia Guo-Liang (夏国良). Chin. Phys. B, 2013, 22(5): 055203.
[9] Methyl orbital signatures in 2-amino-1-propanol
Wang Ke-Dong(王克栋), Duan Kun-Jie(段坤杰), and Liu Yu-Fang (刘玉芳) . Chin. Phys. B, 2012, 21(7): 073103.
[10] Numerical simulation and experimental validation of direct current air corona discharge under atmospheric pressure
Liu Xing-Hua(刘兴华), He Wei(何为), Yang Fan(杨帆), Wang Hong-Yu(王虹宇), Liao Rui-Jin(廖瑞金), and Xiao Han-Guang(肖汉光) . Chin. Phys. B, 2012, 21(7): 075201.
[11] Orbital responses to methyl sites in CnH2n+2 (n=1–6)
Yang Ze-Jin(杨则金), Cheng Xin-Lu(程新路), Zhu Zheng-He(朱正和), and Yang Xiang-Dong(杨向东) . Chin. Phys. B, 2012, 21(2): 023401.
[12] Electronic structure of twinned ZnS nanowires
Li Deng-Feng(李登峰), Li Bo-Lin(李柏林), Xiao Hai-Yan(肖海燕), and Dong Hui-Ning(董会宁). Chin. Phys. B, 2011, 20(6): 067101.
[13] Stability of trapped Bose–Einstein condensates in one-dimensional tilted optical lattice potential
Fang Jian-Shu(方见树) and Liao Xiang-Ping(廖湘萍) . Chin. Phys. B, 2011, 20(4): 040310.
[14] Stabilised bright solitons in Bose—Einstein condensates in an expulsive parabolic and complex potential
Zhang Tao(张涛), Yang Zhan-Ying(杨战营), Zhao Li-Chen(赵立臣), and Yue Rui-Hong(岳瑞宏). Chin. Phys. B, 2010, 19(7): 070502.
[15] Bright and dark soliton solutions in growing Bose—Einstein condensates
Song Wei-Wei(宋伟为), Li Qiu-Yan(李秋艳), Li Zai-Dong(李再东), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2010, 19(7): 070503.
No Suggested Reading articles found!