Please wait a minute...
Chinese Physics, 2004, Vol. 13(9): 1510-1515    DOI: 10.1088/1009-1963/13/9/025
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Study of particle behaviour at the edge in HT-7 tokamak

Xu Wei (徐伟)ab, Wan Bao-Nian (万宝年)a, Zhou Qian (周倩)a, Wu Zhen-Wei (吴振伟)a, Mao Jiao-Shan (毛剑珊)a, Li Jian-Gang (李建刚)a
a Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; b Department of Physics, Guangzhou University, Guangzhou 510405, China
Abstract  The cross-field diffusion coefficient (D) at the edge in the HT-7 tokamak is close to the Bohm value when the line average electron density ranges from $1.5\times10^{19}$ to $3.0\times10^{19}$m$^{-3}$. The energy profile of the particles is derived directly from the $H_{\alpha}(D_{\alpha}$) line shape; the dissociative excitation of molecules is dominating when the local electron temperature is above 10eV. By means of the Monte Carlo method the $D_{\alpha}$ line shape is also simulated. We find that the molecular dissociation contributes to 57% of neutral atoms and 53% of emission intensity in front of the limiter, and 85% of neutral atoms and 82% of emission intensity in front of the wall. The influence of atomic and molecular processes on the energy balance is discussed for the scrape-off layer (SOL), and the power loss from molecular dissociation is found to be $6\times10^4$kW at the SOL. The ion Bernstein wave (IBW) can effectively suppress the magnetohydrodynamic behaviour, the fluctuation levels and the turbulence; the D in front of the limiter declines from 0.84 to 0.2m$^2$$\cdot$s$^{-1}$ and the particle confinement time rises from 9 to 12ms.
Keywords:  plasma      diffusion coefficients      energy profile      atomic and molecular processes      simulation of $D_{\alpha}$ line shape  
Received:  24 August 2003      Revised:  26 April 2004      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.35.Ra (Plasma turbulence)  
  52.25.Fi (Transport properties)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.25.Gj (Fluctuation and chaos phenomena)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  52.65.Pp (Monte Carlo methods)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 19775013 and 10275014).

Cite this article: 

Xu Wei (徐伟), Wan Bao-Nian (万宝年), Zhou Qian (周倩), Wu Zhen-Wei (吴振伟), Mao Jiao-Shan (毛剑珊), Li Jian-Gang (李建刚) Study of particle behaviour at the edge in HT-7 tokamak 2004 Chinese Physics 13 1510

[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[6] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[7] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[8] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[9] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[10] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[11] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[12] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[13] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[14] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[15] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
No Suggested Reading articles found!