Please wait a minute...
Chinese Physics, 2004, Vol. 13(9): 1396-1401    DOI: 10.1088/1009-1963/13/9/005
GENERAL Prev   Next  

Characteristics of critical amplitude of a sinusoidal stimulus in a model neuron

Xie Yong (谢勇)a, Xu Jian-Xue (徐健学)a, Kang Yan-Mei (康艳梅)a, Hu San-Jue (胡三觉)b, Duan Yu-Bin (段玉斌)c 
a State Key Laboratory of Mechanical Structural Strength and Vibration, Xi'an Jiaotong University, Xi'an 710049, China; b Institute of Neuroscience, The Fourth Military University, Xi'an 710032, China; c Department of Physiology, The Fourth Military University, Xi'an 710032, China
Abstract  The characteristics of the critical amplitude of a sinusoidal stimulus in a model neuron, Morris-Lecar model, are investigated numerically. It is important in the study of stochastic resonance to determine whether a periodic stimulus is subthreshold or not. The critical amplitude as a function of the stimulus frequency is not a constant, but a curve, which is the boundary between subthreshold and suprathreshold stimulation. It has been considered that this curve is U-shaped in the previous investigations, and this has been accepted as a universal phenomenon. Nevertheless, we think that it is only true for a type of neuron: namely, resonators. Actually, there exists another type of neuron, integrators, which can undergo a saddle-node on invariant circle bifurcation from the rest state to the firing state. For the latter we find that the critical amplitude increases monotonically as the frequency of sinusoidal stimulus is increased. This is shown by way of the Morris-Lecar model. As a consequence, the critical amplitude curve is studied further, and the dynamical mechanisms underlying the change in critical amplitude curve are uncovered. The results of this paper can provide a reference to choose the subthreshold periodic stimulus.
Keywords:  stochastic resonance      Hopf bifurcation      saddle-node on invariant circle bifurcation      Morris-Lecar model  
Received:  24 July 2003      Revised:  19 December 2003      Accepted manuscript online: 
PACS:  87.10.-e (General theory and mathematical aspects)  
  87.18.Sn (Neural networks and synaptic communication)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Key Natural Science Foundation of China (Grant No 30030040).

Cite this article: 

Xie Yong (谢勇), Xu Jian-Xue (徐健学), Kang Yan-Mei (康艳梅), Hu San-Jue (胡三觉), Duan Yu-Bin (段玉斌) Characteristics of critical amplitude of a sinusoidal stimulus in a model neuron 2004 Chinese Physics 13 1396

[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[5] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[6] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[7] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[8] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[9] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[10] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[11] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[12] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[13] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[14] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[15] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
No Suggested Reading articles found!