Please wait a minute...
Chinese Physics, 2004, Vol. 13(7): 1167-1170    DOI: 10.1088/1009-1963/13/7/036
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Novel material for nonvolatile ovonic unified memory (OUM)-Ag11In12Te26Sb51 phase change semiconductor

Liu Bo (刘波)a, Song Zhi-Tang (宋志棠)a, Zhang Ting (张挺)a, Feng Song-Lin (封松林)a, Gan Fu-Xi (干福熹)b
a Research Centre of Functional Semiconductor Film Engineering & Technology, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; b Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  In this paper, Ag$_{11}$In$_{12}$Te$_{26}$Sb$_{51}$ phase change semiconductor films have been prepared by dc sputtering. The crystallization behaviour of amorphous Ag$_{11}$In$_{12}$Te$_{26}$Sb$_{51}$ thin films was investigated by using differential scanning calorimetry and x-ray diffraction. It was found that the crystallization temperature is about 483K and the melting temperature is 754.8K and the activation energy for crystallization, $E_{\rm a}$, is 2.07eV. The crystalline Ag$_{11}$In$_{12}$Te$_{26}$Sb$_{51}$ films were obtained using initializer. The initialization conditions have a great effect on the sheet resistance of Ag$_{11}$In$_{12}$Te$_{26}$Sb$_{51}$ films. We found that the effect of the initialization condition on the sheet resistance can be ascribed to the crystallinity of Ag$_{11}$In$_{12}$Te$_{26}$Sb$_{51}$ films. The sheet resistance of the amorphous ($R_{\rm amo}$) film is found to be larger than $1\times10^6\Omega$ and that of the crystalline ($R_{\rm cry}$) film lies in the range from about $10^3$ to $10^4\Omega$. So we have the ratio $R_{\rm amo}/R_{\rm cry}=10^2\sim 10^3$, which is sufficiently large for application in memory devices.
Keywords:  Ag$_{11}$In$_{12}$Te$_{26}$Sb$_{51}$      phase change      nonvolatile memory      resistance  
Received:  22 October 2003      Revised:  04 March 2004      Accepted manuscript online: 
PACS:  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
  81.30.Hd (Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder)  
  73.61.Jc (Amorphous semiconductors; glasses)  
  73.61.Le (Other inorganic semiconductors)  
Fund: Project supported by the National High Technology Development Programme of China (Grant No 2003AA32720), Shanghai Nanotechnology Promotion Centre (0352nm016, 0359nm004, 0252nm084), China Postdoctoral Foundation (Grant No 2003034308), K. C. Wong Education

Cite this article: 

Liu Bo (刘波), Song Zhi-Tang (宋志棠), Zhang Ting (张挺), Feng Song-Lin (封松林), Gan Fu-Xi (干福熹) Novel material for nonvolatile ovonic unified memory (OUM)-Ag11In12Te26Sb51 phase change semiconductor 2004 Chinese Physics 13 1167

[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[8] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[9] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[10] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[11] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[12] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[13] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[14] Radiation resistance property of barium gallo-germanate glass doped by Nb2O5
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民). Chin. Phys. B, 2022, 31(2): 027801.
[15] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
No Suggested Reading articles found!