Please wait a minute...
Chinese Physics, 2004, Vol. 13(7): 1091-1095    DOI: 10.1088/1009-1963/13/7/021
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Melting and Grüneisen parameters of NaCl at high pressure

Chen Qi-Feng (陈其峰)ab, Cai Ling-Cang (蔡灵仓)a, Duan Su-Qing (段素青)b, Chen Dong-Quan (陈栋泉)b
a Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Mianyang 621900, China; Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The Buckingham potential has been employed to simulate the melting and thermodynamic parameters of sodium chloride (NaCl) using the molecular dynamics (MD) method. The constant-volume heat capacity and Grüneisen parameters have been obtained in a wide range of temperatures. The calculated thermodynamic parameters are found to be in good agreement with the available experimental data. The NaCl melting simulations appear to validate the interpretation of superheating of the solid in the one-phase MD simulations. The melting curve of NaCl is compared with the experiments and other calculations at pressure 0-30GPa range.
Keywords:  NaCl      melting      Grüneisen parameter      constant-volume heat capacity      molecular dynamics method  
Received:  28 September 2003      Revised:  04 February 2004      Accepted manuscript online: 
PACS:  64.70.D- (Solid-liquid transitions)  
  63.70.+h (Statistical mechanics of lattice vibrations and displacive phase transitions)  
  65.40.Ba (Heat capacity)  
  62.50.+p  
Fund: Project supported by the Science and Technology Foundation of the China Academy of Engineering Physics (Grant No 200103), and the Foundation of Laboratory for Shock Wave and Detonation Physics Research (Grant No 51478030203ZW0902).

Cite this article: 

Chen Qi-Feng (陈其峰), Cai Ling-Cang (蔡灵仓), Duan Su-Qing (段素青), Chen Dong-Quan (陈栋泉) Melting and Grüneisen parameters of NaCl at high pressure 2004 Chinese Physics 13 1091

[1] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[2] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[3] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[4] Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys
Hüseyin Yıldırım and Ali Kemal Garip. Chin. Phys. B, 2021, 30(10): 108201.
[5] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
[6] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[7] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[8] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[9] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[10] Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids
Li-Na Wang(王丽娜), Xing-Yu Zhao(赵兴宇), Heng-Wei Zhou(周恒为), Li Zhang(张丽), Yi-Neng Huang(黄以能). Chin. Phys. B, 2019, 28(9): 096401.
[11] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[12] Directional mechanical and thermal properties of single-layer black phosphorus by classical molecular dynamics
Afira Maryam, Ghulam Abbas, Muhammad Rashid, Atif Sattar. Chin. Phys. B, 2018, 27(1): 017401.
[13] How to detect melting in laser heating diamond anvil cell
Liuxiang Yang(杨留响). Chin. Phys. B, 2016, 25(7): 076201.
[14] Photo-induced athermal phase transitions of HgX (X= S, Se, Te) by ab initio study
Da-hua Ren(任达华), Xin-lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2016, 25(7): 076401.
[15] Pressure-induced solidifications of liquid sulfur below and above λ-transition
Fei Tang(唐菲), Lin-Ji Zhang(张林基), Feng-Liang Liu(刘峰良), Fei Sun(孙菲), Wen-Ge Yang(杨文革), Jun-Long Wang(王君龙), Xiu-Ru Liu(刘秀茹), Ru Shen(沈如). Chin. Phys. B, 2016, 25(4): 046102.
No Suggested Reading articles found!