Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(7): 514-520    DOI: 10.1088/1004-423X/8/7/006
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

RADIATION OF DRESSED EXCITONS IN THE SEMICONDUCTOR MICROCAVITY

Liu Shi-an (刘世安), Lin Shi-ming (林世鸣), Wang Qi-ming (王启明)
State Key Laboratory of Optoelectronic Integration, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
Abstract  In this paper, we introduced the dressed exciton model of the semiconductor micro-cavity device. In the semiconductor micro cavity of vertical-cavity surface-emission device, the excitons first coupled with the cavity through an intra-electromagnetic field and formed the dressed excitons. Then these dressed excitons decayed into the vacuum cavity optical mode, as a multi-particle process. Through the quantum electrodynamics method, the dipole emission density and system energy decayed equation were obtained. And it was predicted that the excitons decay into a very narrow mode when the exciton-cavity coupling becomes strong enough.
Received:  23 January 1999      Revised:  11 February 1999      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 69896260 and 69687003).

Cite this article: 

Liu Shi-an (刘世安), Lin Shi-ming (林世鸣), Wang Qi-ming (王启明) RADIATION OF DRESSED EXCITONS IN THE SEMICONDUCTOR MICROCAVITY 1999 Acta Physica Sinica (Overseas Edition) 8 514

[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[3] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[4] Tunable second-order sideband effects in hybrid optomechanical cavity assisted with a Bose—Einstein condensate
Li-Wei Liu(刘利伟), Chun-Guang Du(杜春光), Guo-Heng Zhang(张国恒), Qiong Chen(陈琼), Yu-Qing Shi(石玉清), Pei-Yu Wang(王培煜), and Yu-Qing Zhang(张玉青). Chin. Phys. B, 2022, 31(10): 103701.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[7] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[8] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[9] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[10] Protection of entanglement between two V-atoms in a multi-cavity coupling system
Wen-Jin Huang(黄文进), Mao-Fa Fang(方卯发), and Xiong Xu(许雄). Chin. Phys. B, 2022, 31(1): 010301.
[11] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[12] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[13] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[14] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[15] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
No Suggested Reading articles found!