Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114205    DOI: 10.1088/1674-1056/ac720f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines

Xiao-Qin Liu(刘晓琴)1, Qian-Qian Hao(郝倩倩)1, Jie Liu(刘杰)1,†, Dan-Hua Liu(刘丹华)1,‡, Wei-Wei Li(李威威)2, and Liang-Bi Su(苏良碧)3,4
1 Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
3 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Yb3+:CaF2-YF3 transparent ceramics with excellent optical quality was successfully fabricated by hot-pressed method. Pulsed laser properties of this ceramics were investigated for the first time. Laser diode (LD) was applied as the pump source to generate a dual-wavelength mode-locked (ML) laser. The maximum average output power was 310 mW, which represents the highest output power of ultrafast calcium fluoride ceramic laser. The spectrum separated at 1048.9 nm and 1049.7 nm with a total pulse duration of 8.9 ps. The interval period between the beating signals was about 4.3 ps, corresponding to a 0.23 THz beat pulse repetition rate. These results demonstrate its potential in producing dual-wavelength ultrashort pulses. These Yb3+:CaF2-YF3 ceramics with low-cost and short-preparation period are ideal candidate materials for ultrafast lasers.
Keywords:  transparent ceramics      passively mode-locking      dual-wavelength laser  
Received:  19 March 2022      Revised:  17 May 2022      Accepted manuscript online:  23 May 2022
PACS:  42.70.Hj (Laser materials)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.55.Xi (Diode-pumped lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974220 and 51902234) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021LLZ008).
Corresponding Authors:  Jie Liu, Dan-Hua Liu     E-mail:  jieliu@sdnu.edu.cn;liudanhua@sdnu.edu.cn

Cite this article: 

Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧) Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines 2022 Chin. Phys. B 31 114205

[1] Udem Th, Reichert J, Holzwarth R and Hänsch T W 1999 Phys. Rev. Lett. 82 3568
[2] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T and Hänsch T W 2000 Phys. Rev. Lett. 84 5102
[3] Yoshioka H, Nakamura S, Ogawa T and Wada S 2010 Opt. Express 18 1479
[4] Huang H T, Wang S Q, Chen H W, Antipov O L, Balabanov S S and Shen D Y 2019 Opt. Exp. 27 38593
[5] Kimura S, Tani S and Kobayashi Y 2019 Optica 6 532
[6] Feng C, Hou W, Yang J M, Liu J, Zheng L H, Su L B, Xu J and Wang Y G 2016 Appl. Opt. 55 3639
[7] Xue Y Y, Zheng L H. Jiang D P, Sai Q L, Su L B and Xu J 2019 Chin. Phys. B 28 037802
[8] Xie G Q, Tang D Y, Zhao L M, Qian L J and Ueda K 2007 Opt. Lett. 32 2741
[9] Peng Y N, Wang Z H, Li D H, Zhu J F and Wei Z Y 2016 Chin. Phys. B 25 054205
[10] Xue Y Y, Xu X D, Su L B and Xu J 2020 J. Synth. Cryst. 49 1347
[11] Boudeile J, Didierjean J, Camy P, Doualan J L, Benayad A, Menard V, Moncorge R, Druon F, Balembois F and Georges P 2008 Opt. Exp. 16 10098
[12] Moncorgé R, Camy P, Doualan J L, Braud A, Margerie J, Ramirez L P, Jullien A, Druon F, Ricaud S, Papadopoulos D N and Georges P 2013 J. Lumin. 133 276
[13] Su L B, Zhang D, Li H J, Du J, Xu Y, Liang X Y, Zhao G J and Xu J 2007 Opt. Exp. 15 2375
[14] Lucca A, Debourg G, Jacquemet M, Druon F, Balembois F, Georges P, Camy P, Doualan J L and Moncorgé R 2004 Opt. Lett. 29 2767
[15] Kowalczyk M, Martynkien T, Mergo P, Soboń G and Sotor J 2019 Photon. Res. 7 182
[16] Kowalczyk M, Major A and Sotor J 2017 Opt. Exp. 25 26289
[17] Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, Au J A D and Agnesi A 2015 J. Opt. Soc. Am. B 32 2321
[18] Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P and Mortier M 2015 Optica 2 288
[19] Li W W, Huang H J, Mei B C and Song J H 2017 Ceram. Int. 43 10403
[20] Li W W, Huang H J, Mei B C, Wang C, Liu J, Wang S Z, Jiang D P and Su L B 2020 J. Am. Ceram. Soc. 103 5787
[21] Liu X Q, Jing W, Hao Q Q, Li D K, Guo J, Liu J and Peng Q Q 2021 Infrared Phys. Techn. 115 103739
[22] Jiang Y G, Jiang B X, Zhu Q H, Jiang N, Zhang P D, Chen S L, Hu X, Zhang G, Fan J T, Su L B, Li J and Zhang L 2018 J. Eur. Ceram. Soc. 38 2404
[23] Xie X Y, Mei B C, Song J H, Li W W and Su L B 2018 Opt. Mater. 76 111
[24] ?ulc J, Nemec M, ?vejkar R, Jelínková H, Doroshenko M E, Fedorov P P and Osiko V V 2013 Opt. Lett. 38 3406
[25] Akchurin M S, Basiev T T, Demidenko A A, Doroshenko M E, Fedorov P P, Garibin E A, Gusev P E, Kuznetsov S V, Krutov M A, Mironov I A, Osiko V V and Popov P A 2013 Opt. Mater. 35 444
[26] Tian Q Y, Yin P, Zhang T, Zhou L B, Xu B, Luo Z Q, Liu H L, Ge Y Q, Zhang J, Liu P and Xu X D 2020 Nanophotonics 9 2495
[27] Zhang H N, Chen X H, Wang Q P and Li P 2013 Chin. Phys. Lett. 30 104202
[28] Wang C, Hao Q Q, Li W W, Huang H J, Wang S Z, Jiang D P, Liu J, Mei B C and Su L B 2020 Chin. Phys. B 29 074205
[29] Zhu J F, Liu K, Li J, Wang J L, Yu Yang, Wang H B, Gao Z Y, Xie T F, Li C Y, Pan Y B, Wei Z Y 2017 Chin. Phys. B 26 054213
[30] Kitajima S, Yamakado K, Shirakawa A, Ueda K, Ezura Y and Ishizawa H 2017 Opt. Lett. 42 1724
[31] Huang X Y, Chen G M, Wei J B, Liu Z Y, Feng Y G, Tian F, Xie T F and Li J 2021 Opt. Mater. 116 111108
[32] Li W W, Huang H J, Mei B C, Wang C, Liu J, Wang S Z, Jiang D P and Su L B 2020 Ceram. Int. 46 19530
[1] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[2] Reflective graphene oxide absorber for passively mode-locked laser operating at nearly 1 μm
Yang Ji-Min (杨济民), Yang Qi (杨琦), Liu Jie (刘杰), Wang Yong-Gang (王勇刚), Yuen H. Tsang. Chin. Phys. B, 2013, 22(9): 094210.
[3] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[4] Spectroscopic characterization of Yb:Sc2O3 transparent ceramics
Lu Shen-Zhou(陆神洲) and Yang Qiu-Hong(杨秋红) . Chin. Phys. B, 2012, 21(4): 047801.
[5] Spectral properties of Ce3+ doped yttrium lanthanum oxide transparent ceramics
Yang Qiu-Hong(杨秋红), Zhou Hong-Xu(周洪旭), and Lu Shen-Zhou(陆神洲). Chin. Phys. B, 2010, 19(2): 020701.
[6] Simultaneous all-solid-state multi-wavelength lasers --- a promising pump source for generating highly coherent terahertz waves
Liu Huan(刘欢), Xu De-Gang(徐德刚), and Yao Jian-Quan(姚建铨). Chin. Phys. B, 2009, 18(3): 1077-1084.
[7] Comparative spectroscopic investigation of Yb-doped YAG, YSAG and YLaO3 transparent ceramics
Jiang Ben-Xue(姜本学), Huang Tong-De(黄同德), Wu Yu-Song(吴玉松), Liu Wen-Bin(刘文斌), Pan Yu-Bai(潘裕柏), Feng Tao(冯涛), and Yang Qiu-Hong(杨秋红). Chin. Phys. B, 2008, 17(9): 3407-3411.
No Suggested Reading articles found!